

Meinberg Funkuhren

Lange Wand 9 D-31812 Bad Pyrmont Telefon: (0 52 81) 93 09-0 Telefax: (0 52 81) 93 09-30 https://www.meinberg.de

info@meinberg.de

IMS-GPS: Clock-Modul mit GPS-Satellitenempfänger

Dieses Produkt ist für den Einsatz in einem modularen **IMS LANTIME**-System von Meinberg bestimmt. Besuchen Sie die [1] <u>IMS-Informationsseite</u>, um mehr zu erfahren.

Die IMS-GPS ist ein Clock-Modul mit GPS-Empfänger für die Meinberg IMS-Plattform. Der GPS-Empfänger kann über die mitgelieferte Meinberg [2]GPSANTv2-Antenne Satellitensignale der GPS-Konstellation empfangen und dekodieren und damit die integrierte Uhr synchronisieren.

Diese neueste Generation der IMS-GPS-Module wurde auf der Basis von Meinbergs neuer gemeinsamen Technologieplattform entwickelt, damit das bereits umfangreiche Funktionsangebot in der Zukunft immer wieder mit neuen Features für alle Endnutzer kostenlos erweitert werden kann. Erfahren Sie mehr [3]hier.

Features

- 12-Kanal GPS L1 C/A-Code-Empfänger mit einer breiten Auswahl an bestückbaren Oszillatoren
- Umfangreich konfigurierbare Pulssignale, inkl. Puls-pro-Sekunde und Puls-pro-Minute
- RS-232-Schnittstelle zur Zeitstringausgabe und auch zur Synchronisation durch externe Zeitstring & 1PPS-Signal
- Mitgelieferte GPSANTv2-Antenne ermöglicht durch Downconverter-Technologie lange Übertragungsstrecken von bis zu 1100 m (mit Ultraflex Kabel H2010)

Produktbeschreibung

Das IMS-GPS-Clock-Modul ist eine 12-Kanal-Satellitenfunkuhr, deren GPS-Technologie von Grund auf speziell für Zeit und Frequenzsynchronisationszwecke entwickelt wurde. Das GPS-Empfängermodul stellt eine hochgenaue Zeit- und Frequenzreferenz für ein Meinberg IMS-System dar und ist für den Empfang des amerikanischen GPS (Global Positioning System) konzipiert - das ermöglicht den weltweiten Einsatz Ihres Meinberg-Systems.

Funktionsweise

Der integrierte GPS-Empfänger benötigt eine externe abgesetzte GPSANTv2-Antenne und kann Signale von GPS-Satelliten empfangen.

Sobald das IMS-GPS-Empfängermodul erfolgreich initialisiert und synchronisiert ist, verteilt es ein 1PPS (Puls pro Sekunde) Referenztaktsignal und eine 10 MHz Referenzfrequenz. Diese werden dann von den IMS-Ausgangsmodulen verwendet, um eine Vielzahl von spezifischen Ausgangssignalen zu verteilen oder zu erzeugen, die in vielen unterschiedlichen Anwendungen zum Einsatz kommen. Die Präzision und Genauigkeit der beiden genannten Referenzsignale sind entscheidend für die Qualität der Ausgangssignale.

Das Modul ist auch in der Lage, über die MRS-Funktionalität (Multi Reference Source) Ihres IMS-Systems alle verfügbaren Referenzquellen über die GNSS-Signale hinaus zur Synchronisation zu nutzen.

Das IMS-GPS Modul ist Hot-Swap-fähig und wird von einem IMS-System auch im laufenden Betrieb automatisch erkannt und eingebunden.

Einsatz von zwei IMS-Referenzuhren

Das RSC-Umschaltmodul steuert in redundanten Systemen mit zwei IMS-Referenzuhren das Umschalten der Referenzquelle. Die Karte dient der Umschaltung der Impuls- und Frequenzausgänge sowie der seriellen Schnittstellen der angeschlossenen Referenzuhren.

Eigenschaften

Empfänger	12-Kanal GPS L1 C/A-Code-Empfänger
Eingangsfrequenz	35,4 MHz (Zwischenfrequenz der GPSANTv2)
Statusanzeigen	Status-Info durch 4 LEDs
	* Fail: Synchronisationszustand des Moduls
	* Ant: Status der Verbindung mit Antenne
	* Nav: Status der GNSS-Positionsbestimmung
	* Init: Initialisierung der Modulfirmware und Kommunikation mit IMS-Software
Antennentyp	Mitgelieferte [2]GPSANTv2 GPS-Antenne mit spezieller Downkonverter-Technik, die eine Absetzung von max. 300 m mit RG58-Kabel, max. 700 m mit RG213-Kabel und max. 1100 m H2010 Ultraflex-Kabel ermöglicht.
Synchronisationszeit	Max. 1 Minute im Normalbetrieb Max. 25 Minuten (Durchschnitt 12 Minuten) bei Erstinbetriebnahme oder fehlenden Satellitedaten
Frequenzausgänge	Frequency-Synthesizer für beliebige Frequenzen von 0,125 Hz bis 10 MHz, einstellbare Phase, Ausgabe über bspw. [4]IMS-BPE-Module
Genauigkeit der Ausgangsfrequenzen	Genauigkeit abhängig vom Oszillator (Standard: OCXO-SQ), siehe [5]Oszillatorliste
Pulsausgänge	Diverse programmierbare Pulssignale (TTL-Pegel), mitunter Puls-pro-Sekunde und Puls-pro-Minute, Ausgänge über vier getrennte Kanäle, Bereitstellung über externes Ausgangsmodul (z. B. [4]IMS-BPE-Modul).
Genauigkeit der Ausgangspulse	< ±50 ns (OCXO SQ, OCXO HQ, OCXO DHQ)
Schnittstellen	RS-232-Schnittstelle zur Zeitstringausgabe und auch zur Synchronisation durch externe Zeitstring & 1PPS-Signal
Serielle Telegrammausgabe	Baudrate: 300, 600, 1200, 2400, 4800, 9600, 19200 Baud Datenformat: 7E1, 7E2, 7N2, 7O1, 7O2, 8E1, 8N1, 8N2, 8O1 Zeittelegramm: [6]Meinberg Standard-Telegramm, SAT, Uni Erlangen (NTP), SPA, Sysplex, RACAL, NMEA0183 (RMC,GGA,ZDA), Meinberg GPS, COMPUTIME, ION oder [7]Capture-Telegramm
Ausgangssteuerung	Puls-, Zeittelegramm- und Frequenzausgänge lassen sich abhängig von Sync-Zustand schalten oder können auch dauerhaft aktiviert sein

Unterstützte	
Zeitcode-Formate	Dedizierte Zeitcode-Ausgabe (DCLS/AM) über Ausgangsmodul (z. B. [4]
	IMS-BPE-Module) und Eingangsmöglichkeit über Eingangsmodul (z. B. [8]
	IMS-MRI-Modul) IRIG B002 (DCLS) / IRIG B122 (AM, 1 kHz-Träger): 100pps, BCD
	time-of-year
	IRIG B003 (DCLS) / IRIG B123 (AM, 1 kHz-Träger): 100pps, BCD time-of-year, SBS
	time-of-day IRIG B006 (DCLS) / IRIG B126 (AM, 1 kHz-Träger): 100pps, BCD time-of-year, year IRIG B007 (DCLS) / IRIG B127 (AM, 1 kHz-Träger): 100pps, BCD time-of-year, year, SBS time-of-day
	IEEE1344 (AM, 1 kHz-Träger): Code. It. IEEE1344-1995, 100pps, BCD time-of-year, SBS time-of-day, IEEE1344 Erweiterungen für Datum, Zeitzone, Sommer/Winterzeit und Schaltsekunde im Segment "Control Functions" C37.118: wie IEEE1344, jedoch mit gedrehtem Vorzeichenbit für den UTC-Offset
	AFNOR NFS-87500 (AM mit 1 kHz-Träger/DCLS): Code It. AFNOR NFS-87500, 100pps, BCD time-of-year, vollständiges Datum, SBS time-of-day
Antennenanschluss	BNC-Buchse
Backup-Batterietyp	CR2032 - Knopfbatterie Bei Ausfall der Versorgungsspannung Betrieb der Hardwareuhr auf Quarzbasis und Speicherung der Almanach-Daten im RAM Lebensdauer der Lithiumbatterie: min. 10 Jahre
Betriebsspannung	+5 V DC
Stromaufnahme	1,1 A bis 1,4 A (oszillatorabhängig)
Mischfrequenz	10 MHz (vom Empfänger)
Temperaturbereich	Betrieb: 0 55 °C (32 131 °F) Lagerung: -20 70 °C (-4 158 °F)
Luftfeuchtigkeit	Max. 85 % (nicht kondensierend) bei 40 °C
Garantie	3 Jahre Herstellergarantie
RoHS-Status des Produkts	Dieses Produkt ist RoHS-konform.
WEEE-Status des Produkts	Dieses Produkt fällt unter die B2B-Kategorie. Zur Entsorgung kann es an den Hersteller übergeben werden. Die Versandkosten für den Rücktransport sind vom Kunden zu tragen, die Entsorgung selbst wird von Meinberg übernommen.

Handbuch

Das deutsche Handbuch steht als PDF zum Download zur Verfügung: [9] Download (PDF)

Links:

- [1] https://www.meinberg.de/german/products/modular-sync-system.htm
- [2] https://www.meinberg.de/german/products/gps-antenne-konverter.htm
- [3] https://www.meinberg.de/german/news/meinbergs-naechste-generation-von-gnss-synchronisierten-referenzuhren.htm
- [4] https://www.meinberg.de/german/products/ims-output-modules.htm
- [5] https://www.meinberg.de/german/specs/gpsopt.htm
- [6] https://www.meinberg.de/german/specs/timestr.htm
- [7] https://www.meinberg.de/german/specs/capstr.htm
- [8] https://www.meinberg.de/german/products/ims-mri.htm
- [9] https://www.meinberg.de/download/docs/manuals/german/ims-gps183_sug.pdf