Technical Information
Operating Instructions

UA509P
Impressum

Werner Meinberg
Auf der Landwehr 22
D-31812 Bad Pyrmont

Phone: ++49 52 81 - 9309-0
Fax: ++49 52 81 - 9309-30

Internet: http://www.meinberg.de
Email: info@meinberg.de

October 25, 2000
Table of Contents

Impressum .. 2
General Information about DCF77 ... 5
UA509P ... 6
Installation ... 6
 Power Supply ... 6
 Mounting the Antenna ... 6
 Powering Up the System .. 6
 LF Receiver .. 7
 Microprocessor System .. 7
 Buffered Real Time Clock .. 7
 Serial Interfaces .. 8
 Relay Outputs ... 8
 Slave Clock Pulse Outputs .. 8
 LC Display ... 8
 MENU Key .. 9
 CLR/ACK Key ... 9
 NEXT Key .. 9
 INC Key .. 9
 INC Key together with CLR/ACK Key .. 9
The Menus in Detail .. 10
 Root Menu .. 10
 Menu Day Plan ... 10
 Programming a Plan ... 11
 Select a Plan ... 11
 Select a Switching Program ... 11
Editing Holydays ... 13
Cyclic Pulses .. 14
 Table of possible Pulse Periods .. 14
 Configuration .. 15
Clear Data ... 16
 Clear RAM .. 16
 Clear Plan .. 16
Setting the Clock Manually .. 17
Configuration Time Zone ... 17
Slave Clock Operation ... 18
 Display Slave Line Time .. 18
 Set Slave Line Time/Slave Clocks 19
Setup Relay State ... 20
Firmware Updates .. 20
Inquiring Serial Number and Software Revision 20
Technical Specifications .. 22
 CE Label ... 23
 Format of the Meinberg Standard Time String 24
 Component Layout .. 25
 Component Layout Display ... 26
 Rear Connector Pin Assignment UA509P 27
Menu Quick Reference ... 29
General Information about DCF77

The radio remote clocks made by Meinberg receive the signal from the long wave transmitter DCF77. This long wave transmitter installed in Mainflingen near Frankfurt/Germany transmits the reference time of the Federal Republic of Germany. This time reference is either the Central European Time (Mitteleuropäische Zeit, MEZ) or the Central European Summer Time (Mitteleuropäische Sommerzeit, MESZ). The transmitter is controlled by the atomic clock plant at the Federal Physical Technical Institute (PTB) in Braunschweig/Germany and transmits the current time of day, date of month and day of week in coded second pulses. Once every minute the complete time information is available.

At the beginning of every second the amplitude of the high precision 77.5 kHz carrier frequency is lowered by 75% for a period of 0.1 or 0.2 sec. The length of these time marks represent a binary coding scheme using the short time mark for logical zeroes and the long time mark for logical ones. The information on the current date and time as well as some parity and status bits can be decoded from the time marks of the 15th up to the 58th second every minute. The absence of any time mark at the 59th second of a minute signals that a new minute will begin with the next time mark.

Our radio remote clocks decode the highly accurate information on date and time within a wide range around Germany. So some of our clocks are installed in Bilbao/Spain as well as in the city of Umeå in northern Sweden - fully satisfying the requirements of the users. The radio remote clocks automatically switch to summertime and back. The reception of the time information is free of charge and does not need to be registered.

Generally it is important to position the antenna in an optimal way. It should be mounted at least 30 centimeters away from the clock unit and from solid steel. The antenna should be aligned at a right angle to the direction of the transmitter (Frankfurt).

Figure: Decoding Scheme

```
M     Start of Minute (0.1 s)
R     RF Transmission via secondary antenna
A1    Announcement of a change in daylight saving
Z1, Z2 Time zone identification
      Z1, Z2 = 0, 1: Daylight saving disabled
      Z1, Z2 = 1, 0: Daylight saving enabled
A2    Announcement of a leap second
S     Start of time code information
P1, P2, P3 Even parity bits
```
UA509P

The radio remote clock UA509P has been designed for applications where two independent serial interfaces and up to four free programmable relay outputs are needed. The clock also offers the possibility to control slave clocks via separate slave clock drivers. The rear connector pin assignment is compatible with the former clock UA537P to replace this clock in the future. The UA509P contains a new flash EPROM with bootstrap loader that allows to upload a new firmware via the serial interface without removal of the clock.

Installation

Power Supply

The System requests a single supply voltage of +5V/260mA. The power supply should be longitudinal regulated. If a switched mode power supply is used the negative pole is to ground directly or via a capacitor >0.1F. The voltage feed should be applied low impedance and via the pins z, b and d.

Mounting the Antenna

Generally it is important to position the antenna in an optimal way. The antenna should be aligned at a right angle to the direction of the transmitter (Frankfurt). It should be mounted at least 30 centimeters away from the clock unit and from solid steel. A distance of several meters is recommended to all TVs or computer monitors.

The scope of supply includes an active ferrite antenna for indoor mounting (AI01) and 5m of RG174 coaxial cable. When mounting the antenna outdoor the weather proof Antenna AW02 is to use.

Powering Up the System

After connecting the power supply and the antenna the system is ready to operate. Time, date and the relay conditions are displayed on the LC display (the timebase chosen for COM0 is displayed).

The brightness of the “Feld” LED in the front panel depends on the signal strength of the DCF77 carrier. In order to get the maximum signal, the antenna should be aligned in two steps. First it should be turned slowly until the “Feld” LED is mostly dimmed. Finally the antenna must be turned by 90° from this position to obtain maximum
signal. If the antenna is installed properly and the signal from DCF77 can be received without strong distortions, the "Mod." LED starts blinking exactly once per second, corresponding to the time marks from DCF77. If this LED flashes intermittently, there is some electrical noise around which prevents the microprocessor from decoding the time message. So a better location for the antenna must be found. In case of correct reception it takes up to three minutes after power-up until the clock is synchronized and the "Freil." LED is turned off. It is turned on again to indicate the loss of or an error in reception. Without RF signal the clock runs on XTAL with an accuracy of \(10^{-6}\). If the clock have lost reception for more than 12 hours the "Freil." LED starts blinking.

The serial outputs are enabled immediately after power up. Baudrate, framing, output mode and time zone can be configured separately by two DIL switches.

LF Receiver

An external ferrit antenna is used to receive the signal from DCF77 and supplies it to the on-board LF receiver where it is demodulated by a synchronous detector with automatic gain control. The demodulated time marks are fed to the clock’s microprocessor.

Microprocessor System

The time marks from the receiver circuit are filtered and decoded by the microprocessor system. Parity and consistency checks over a period of two minutes take care for detecting errors in the received time telegram. The checked and decoded time is written to the on-board real time clock and spread by the interfaces. A software watchdog lets the microprocessor recover from malfunction. A power-fail comparator resets the microprocessor if the supply voltage drops below a specified threshold. A flash EPROM is used as program memory which can be loaded with the firmware by the serial interface COM0.

Buffered Real Time Clock

In case of supply voltage failure the on-board real time clock keeps the time powered by a backup capacitor for more than 150 hours. This capacitor does not need any maintenance. Alternatively, the clock can be ordered with a lithium battery which has a live time of at least 10 years guaranteed.
Serial Interfaces

Two independent asynchronous serial ports can be used to transmit information on date and time to other devices. Baudrate, framing and mode of operation can be configured separately for both interfaces COM0 and COM1. Additionally, a time zone can be assigned to each port: The drivers can be configured individually to transmit either standard time (MEZ/MESZ=CET/CEST), standard time with suppression of daylight saving (always MEZ=CET), or UTC. Both serial ports can send a time string once per second, per minute or only on request. The format of the time string is described in the section "Technical Specifications".

Relay Outputs

The UA509P provides four relay outputs that can be applied to switching times or cyclic pulses. Eight different plans assigned to the weekdays, sundays or holidays can be edited by the 4 keys in the frontpanel. A plan consists of up to 64 switch-on times and 64 switch-off times. Only one plan per day can be executed.

Alternative to switching times cyclic pulses with a settable pulse length can be programmed. A table of possible pulses and pulse lengths is given in chapter "Cyclic Pulses".

The maximum load to be applied to the relays is 50W.

Slave Clock Pulse Outputs

The UA509P generates pulses to control slave clocks via an external slave line booster like HUC80E. Also it is possible to drive the slave clocks via a NUC80E which is connected to a current loop serial interface of the UA509P.

LC Display

The 4 x 16 character LC display is used to show the receiver’s status and let the user edit parameters. The keys described below let the user select the desired menu. The next chapter lists all available menus in detail. A quick reference of the available menus and submenus can be found at the end of this document.
MENU Key

This key lets the user step through several display menus showing specific data.

CLR/ACK Key

This key has to be used when parameters are to be modified. When this key is pressed the parameters that have been edited are saved in the battery buffered memory. If the menu is left without pressing CLR/ACK all changes are discarded. If the current menu just displays data (cursor not visible) pressing this key switches to a submenu (if available).

NEXT Key

When editing parameters (LCD cursor is visible) this key moves the cursor to the next digit rsp. to the next parameter to be edited.

INC Key

When editing parameters this key increments the digit or letter at the cursor position.

INC Key together with CLR/ACK Key

When pressing CLR/ACK while INC is being pressed the currently displayed data is cleared and the cursor jumps to the first position.
The Menus in Detail

Root Menu

The root menu is shown when the receiver has completed initialization after power-up. The first two lines of the display show the time zone (as defined in the setup menu), the actual time and the date. The third line shows the user if one of the relay output is applied with an impulse (I). The last line shows if an output is currently active (*) or not (-).

<table>
<thead>
<tr>
<th>UTC</th>
<th>13:36:41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dienstag</td>
<td>13:02:96</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* means relay on
- means relay off
I means relay applied with cyclic pulse

If the INC key is pressed from the root menu a submenu is displayed showing the receiver’s software revision:

Pic. 2.2: Submenu 1

Pressing MENU or INC again lets the menu return to the root menu.

Menu Day Plan

This menu lets the user assign a plan to a corresponding day of week. The cursor starts at "Mo" (monday) and can be stepped to the next day by pressing NEXT.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Plan</th>
<th>Do</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>01</td>
<td>Fr</td>
<td>01</td>
</tr>
<tr>
<td>Di</td>
<td>--</td>
<td>Sa</td>
<td>--</td>
</tr>
<tr>
<td>Mi</td>
<td>07</td>
<td>So</td>
<td>--</td>
</tr>
</tbody>
</table>

Pic. 2.3: Menu 2

Pressing INC increases the no. of the plan (01 ... 08) while CLR/ACK saves the edited plan to the RAM. Pressing INC and CLR/ACK clears the plan of the currently active day.
Programming a Plan

A Plan is a programmed sequence of several switching times. A plan consists of up to 64 switching programs (PRG). A switching program is a set of a switch-on time (EIN), a switch-off time (AUS) and the corresponding relay (Rel.). Up to eight plans can be configured and assigned to any day of the week or holyday.

To program the plans and switching programs the MENU key is to press in order to enter menu 3. The following is displayed:

<table>
<thead>
<tr>
<th>Plan: 01</th>
<th>PRG: 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL:</td>
<td>1 Fr</td>
</tr>
<tr>
<td>EIN:</td>
<td>09:12:30</td>
</tr>
<tr>
<td>AUS:</td>
<td>19:30:30</td>
</tr>
</tbody>
</table>

Pic. 2.4: Menu 3

Select a Plan

The no. of the plan to edit (01 ... 08) can be choosen by pressing INC while the cursor appears at the corresponding position (PLAN).

Select a Switching Program

The no. of the switching program to edit (01 ... 64) can be choosen by pressing INC while the cursor appears at the corresponding position (PRG).

<table>
<thead>
<tr>
<th>Plan: 01</th>
<th>PRG: 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL:</td>
<td>1 Fr</td>
</tr>
<tr>
<td>EIN:</td>
<td>09:12:30</td>
</tr>
<tr>
<td>AUS:</td>
<td>19:30:30</td>
</tr>
</tbody>
</table>

When pressing INC while CLR/ACK is already pressed the program no. is set back to 01. After the switching program no. is selected the corresponding relay and the switching times can be edited in the same way.

After this inputs have been done, it is important to save the switching program by pressing CLR/ACK before the next switching program is selected. Otherwise the edited modificatations are lost.
ATTENTION
Because the calculation of the plans is based on greater/less comparations of the switching times it is necessary to sort the switching programs of one relay in a chronological order, but not all successive switching programs have to be programmed.

1. Example: correct programming

PRG: 01 REL.:1 EIN: 08:00:00 AUS: 08:00:03
PRG: 02 REL.:1 EIN: 08:40:00 AUS: 09:45:00
PRG: 03 REL.:1 EIN: — :— :— AUS: —:— :—

PRG: 09 REL.:1 EIN: — :— :— AUS: —:— :—
PRG: 11 REL.:1 EIN: 23:12:00 AUS: 23:54:00

2. Example: correct programming

PRG: 01 REL.:1 EIN: 08:00:00 AUS: 08:00:03
PRG: 02 REL.:3 EIN: 06:40:00 AUS: 20:45:00
PRG: 03 REL.:1 EIN: 12:30:00 AUS: 12:30:03

PRG: 09 REL.:2 EIN: 11:55:00 AUS: 11:57:00
PRG: 11 REL.:4 EIN: 23:12:00 AUS: 23:54:00
PRG: 12 REL.:2 EIN: 12:00:00 AUS: —:—:—

3. Example: incorrect programming

PRG: 01 REL.:1 EIN: 08:00:00 AUS: 08:00:03
PRG: 02 REL.:3 EIN: 06:40:00 AUS: 20:45:00
PRG: 03 REL.:1 EIN: 17:30:00 AUS: 18:00:00

PRG: 09 REL.:2 EIN: 11:55:00 AUS: —:—:—
PRG: 11 REL.:4 EIN: 23:12:00 AUS: 23:54:00
PRG: 12 REL.:1 EIN: 09:30:00 AUS: 09:30:03

In the third example the execution of the program 03 should switch on the relay no. 1 at 17:30:00. However, the following program no. 12 causes the relay to keep switched off because the actual time is past the switch-off time (09:30:03). The program no. 03 is never executed.
Editing Holydays

It is possible to program up to 99 holydays with higher priority than a weekday. The MENU key lets the user enter the following menu:

![Menu 4](image)

Each of the holydays are assigned to a specified date and a plan. The date can be entered in two different ways:

1. **Variable Holydays:**

 Day, month and year are to be entered

 e.g.: DATUM: 16.03.90

 In this case the plan is executed only at the 16. of March in 1990.

2. **Fixed Holydays:**

 Day and month are to be entered

 e.g.: DATUM: 01.05.--

 In this case the plan is executed at the 1. of May every year.
Cyclic Pulses

Instead of switching times it is possible to assign cyclic pulses to a relay. The pulse period is to be configured by setting a two-digit value and the unit, either seconds (sek.), minutes (min.) or hours (std.). The allowed values for the pulse period are given in the following table. The pulse duration can be chosen from 0.1s to 9.9s in steps of 100ms. A pulse has always a higher priority than a switching time that is programmed for the same relay.

Table of possible Pulse Periods

<table>
<thead>
<tr>
<th>Period</th>
<th>Unit</th>
<th>Period</th>
<th>Unit</th>
<th>Period</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>sek</td>
<td>01</td>
<td>min</td>
<td>01</td>
<td>std</td>
</tr>
<tr>
<td>02</td>
<td>sek</td>
<td>02</td>
<td>min</td>
<td>02</td>
<td>std</td>
</tr>
<tr>
<td>03</td>
<td>sek</td>
<td>03</td>
<td>min</td>
<td>03</td>
<td>std</td>
</tr>
<tr>
<td>04</td>
<td>sek</td>
<td>04</td>
<td>min</td>
<td>04</td>
<td>std</td>
</tr>
<tr>
<td>05</td>
<td>sek</td>
<td>05</td>
<td>min</td>
<td>05</td>
<td>std</td>
</tr>
<tr>
<td>06</td>
<td>sek</td>
<td>06</td>
<td>min</td>
<td>06</td>
<td>std</td>
</tr>
<tr>
<td>10</td>
<td>sek</td>
<td>10</td>
<td>min</td>
<td>10</td>
<td>std</td>
</tr>
<tr>
<td>12</td>
<td>sek</td>
<td>12</td>
<td>min</td>
<td>12</td>
<td>std</td>
</tr>
<tr>
<td>15</td>
<td>sek</td>
<td>15</td>
<td>min</td>
<td>15</td>
<td>std</td>
</tr>
<tr>
<td>20</td>
<td>sek</td>
<td>20</td>
<td>min</td>
<td>20</td>
<td>std</td>
</tr>
<tr>
<td>30</td>
<td>sek</td>
<td>30</td>
<td>min</td>
<td>30</td>
<td>std</td>
</tr>
</tbody>
</table>

When choosing this menu by pressing CLR/ACK the following appears on the display:

Example:

A cyclic pulse with a period of 3 seconds and a duration of 200ms is to program. The relay no. 1 is to select with the keys NEXT and INC. After this is done the pulse period is to set in the same manner: Press NEXT and then INC until the value 03 appears. Then press NEXT and then INC again until sek. appears. After that the pulse duration is to set to 0.2 sek. in the same way. If this is done the modifications are to save by pressing CLR/ACK. After that the pulse output is active.
Configuration

This menu lets the user configure the serial outputs:

<table>
<thead>
<tr>
<th>Baudrate</th>
<th>7E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausg.:</td>
<td>sek.</td>
</tr>
</tbody>
</table>

Pic. 3.0: Menu 6

Baudrate

The baudrate is settable for COM0 and for COM1 in the following steps: 600, 1200, 2400, 4800, 9600, 19200, 38400 and 57600. The framing is settable as follows: 7E1, 7E2, 7O2, 7N2, 8E1, 8N1 or 8N2.

Output Mode

Both of the serial ports send a time string in three different output modes. Either on request only ("auf Anfr."; sending a '?' -ASCII-Code 3Fh- to the clock), once per second ("sekuendl.") or once per minute ("minuetlich").
Clear Data

It is possible to clear each of the plans separate as well as the whole RAM. Press **MENU** as often until the following appears in the display:

![Pic. 3.1: Menu 'Löschen'](image)

With the **NEXT** key the user can change between the two options (indicated by >>) while the **CLR/ACK** key is used to select one of the options.

Clear RAM

After selecting "RAM löschen" with the **CLR/ACK** key the user is asked to confirm the process again by pressing **CLR/ACK**. **ATTENTION:** All plans, switching programs, cyclic pulses and other configurations will be cleared. Pressing **NEXT** instead of **CLR/ACK** lets the clock return to the menu "Löschen" without clearing the RAM.

Clear Plan

The user can enter the menu to clear plans by pressing **CLR/ACK** while "Plan löschen" is marked with >>.

![Pic. 3.2: Menu 'Löschen Plan'](image)

With the **INC** key the user can enter the concerning plan to be cleared (01-08). To abort press **MENU**. To confirm press **CLR/ACK**, the entered plan is cleared now.
Setting the Clock Manually

Setting the clock manually can be done in the menu ‘Uhr stellen’:

![Uhrzeit setzen](image)

After the time, date and day of week have been set the modification has to be confirmed by pressing CLR/ACK. Leave the menu by pressing MENU.

Configuration Time Zone

Each of the two serial interfaces can be assigned to a time zone. The user can select one of the following options for each interface: MEZ/MESZ, UTC or MEZ). The front panel display always shows the time zone assigned to COM0. To confirm modifications press CLR/ACK.

Slave Clock Operation

The UA509P generates slave clock pulses that are able to control slave clocks. These TTL pulses must be amplified by a separate slave line booster HUC80E.

The HUC80E includes a short circuit proofed pulse amplifier for the TTL-pulses generated by the UA509P. The pulse voltage is selectable (12V/24V). Also a power supply is integrated to provide the HUC80E itself and the UA509P with a voltage of 5V. In case of power supply failure the time is saved in a buffered memory. After restart of the system the lost pulses are generated automatically so that the slave clocks will be set correctly. The extra minute pulses are added every two seconds. The pulse duration of the minute pulses is 1s, the duration of the second pulses is 0.5s.

The master clock has no feedback from the slave clocks to find out what time they show. So if the system is turned on for the first time or slave clocks are added, the slave clocks must be initially set to a well defined state. This can be done in the menu ‘Nebenuhr setzen’.

--- SETUP ---

--- Nebenuhrzeit ---

Nebenuhr

>> anzeigen
Setzen

Pic. 3.5

Pic. 3.6

Pic. 3.5:

The menu ‘SETUP Nebenuhr’ lets the user enter the submenu ‘Nebenuhrenzeit’ by pressing CLR/ACK.

Pic. 3.6:

In this submenu the user can choose either to see the slave line time displayed (>>anzeigen) or to set the slave line time/the slave clocks (>>setzen). The choice is done by pressing NEXT and confirm with the CLR/ACK key.

Display Slave Line Time

The actual slave line time is displayed. There are three modes:

1.) normal mode: slave line time is in time with the clock's time
2.) hold mode: line time > clock time; line time waits for clock time
3.) follow mode: line time < clock time; line time catches up clock time
Set Slave Line Time/Slave Clocks

When the menu ‘>>>setzen’ is selected the slave line is stopped and no pulses are generated until the menu is leaved.

In the second line the user can edit the slave line time. Here the current time of the slave clocks should be entered. After confirming with CLR/ACK the time is saved in the RAM and the UA509P starts generating pulses on the slave lines. The slave line time is displayed either waiting for the clock time or trying to catch up the clock time. It is possible to pulse the minute and the second line manually by changing ‘stop’ into ‘run’ behind the according line MIN. or SEK.. In this mode the internal slave line time is also incremented, so it is necessary to check it again before the menu is confirmed with the CLR/ACK key. The displayed slave line time must match exactly with the slave clocks time. Otherwise the slave line time is to set again.

In the set-manually mode it is easy to check the right polarity of the bipolar minute and second line pulses:

The status LEDs in the front panel of the HUC80E reflect the pulses on the minute and second lines. If a LED labeled ‘1’ is turned on, the corresponding hand of the slave clocks must move to an odd count, e.g. if the 1 Min. LED is bright, the minutes must move to 1, 3, 5, etc. In parallel, if the 0 Min. LED is turned on, all the slave clocks must show an even minute count. The second line must behave in the same way. If one of the slave clocks behaves contrary, it must be connected to the master clock with reverse polarity.
Setup Relay State

In the menu ‘SETUP Schaltzustände’ it is possible to set or to clear the relays manually regardless of the switching programs. The display shows the four relays with the corresponding state. Using **NEXT** and **INC** lets the user switch on or off each of the relays.

With the **MENU** key the user leaves this menu. The relays return to the state they have had before entering the setup relay state menu.

Firmware Updates

Whenever the on-board software must be upgraded or modified, the new firmware can be downloaded to the internal flash memory via the serial port COM0.

If the **MENU** key is pressed while the system is powered up, a bootstrap-loader is activated and waits for instructions from the serial port COM0. The new firmware can be sent to the UA509P from any standard PC with serial interface. A loader program will be shipped together with the file containing the image of the new firmware.

The contents of the program memory will not be modified until the loader program has sent the command to erase the flash memory. So if the **MENU** key is pressed unintentionally while the system is powered up, the firmware will not be changed accidentally. After the next power-up, the system will be ready to operate again.

Inquiring Serial Number and Software Revision

The serial number and the revision of the loaded software can be red out by sending the three characters "**SN!**" via COM0 to the clock that starts sending the following string:

```
SN:UA509 9041260  REV:01.00/01
```

The software revision is updated automatically with every update of the firmware. The serial number is fixed in an I²C bus EEPROM and can not be changed.
Technical Specifications

RECEIVER: narrowband synchronous receiver with automatic gain control
bandwidth: approx. 40Hz

FIELD STRENGTH: indicated by LED

DISPLAY: LC-Display, 4 x 16 characters

TIMECODE CHECK: multiple software check of the incoming timecode
parity and consistency check over a period of two minutes

RELIABILITY OF OPERATION: A software watchdog lets the microprocessor recover from
malfunction. A power-fail comparator resets the microprocessor if the supply voltage drops below a specified threshold.

RUNNING ON XTAL: RF distortions indicated by "Freil."-LED and a status character
in the serial output string
without RF signal the clock runs on XTAL
with an accuracy of 10^{-6} (after 24h of synchronous operation)

BUFFERING: In case of supply voltage failure the on-board RTC keeps the
time based on XTAL for more than 150 hours (buffer capacitor)
optional lithium backup battery (life time: 10 years)

MANUAL SET MODE: Time and date can be set manually through a menu

OUTPUTS: minute and second slave line pulses (TTL level)
4 relay outputs; max. 50W load

INTERFACES: 2 independent interfaces (COM0 and COM1)
baudrate, framing, output mode and time zone are configurable
for each interface

COM0: 1 RS232 output, 1 RS232 input, 1 active current loop outputs

COM1: 1 RS232 output, 1 RS232 input
TRANSMISSION
SPEED: configurable by menu
600, 1200, 2400, 4800, 9600, 19200, 38400 or 57600 baud

FRAMING: configurable by menu
7E1, 7E2, 8N1, 8N2 oder 8E1

OUTPUT STRING: see "Format of the Meinberg Standard Time String"

CONNECTORS: 48 pin rear VG edge connector DIN 41612
Subminiature coaxial RF connector (SMB type)

ANTENNA: active external ferrite antenna in a plastic case
Length of the cable: up to 100m or more without amplifier

POWER
REQUIREMENTS: +5V, @300mA

PHYSICAL
DIMENSIONS: Eurocard, 100mm x 160mm, 1.5mm Epoxy
aluminium front panel: 3U/22HP (128mm high x 111mm wide)

AMBIENT
TEMPERATURE: 0 ... 50°C

HUMIDITY: max. 85 %

OPTIONS: Hardware and software modifications according to customer specification

CE Label

This device conforms to the directive 89/336/EWG on the approximation of the laws of the Member States of the European Community relating to electromagnetic compatibility.
Format of the Meinberg Standard Time String

The Meinberg Standard Time String is a sequence of 32 ASCII characters starting with the STX (start-of-text) character and ending with the ETX (end-of-text) character. The format is:

<STX>D:dd.mm.yy;T:w;U:hh.mm.ss;uvxy<ETX>

The letters printed in *italics* are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

<STX> Start-Of-Text (ASCII code 02h)

dd.mm.yy the current date:

- *dd* day of month (01..31)
- *mm* month (01..12)
- *yy* year of the century (00..99)

w the day of the week (1..7, 1 = Monday)

hh.mm.ss the current time:

- *hh* hours (00..23)
- *mm* minutes (00..59)
- *ss* seconds (00..59, or 60 while leap second)

uv clock status characters:

- *u*: '#' clock has not synchronized after reset
- ' ' (space, 20h) clock has synchronized after reset
- *v*: '*' DCF77 clock currently runs on XTAL
- ' ' (space, 20h) DCF77 clock is sync’d with transmitter

x time zone indicator:

- ‘U’ UTC Universal Time Coordinated, formerly GMT
- ‘ ‘ MEZ European Standard Time, daylight saving disabled
- ‘S’ MESZ European Summertime, daylight saving enabled

y announcement of discontinuity of time, enabled during last hour before discontinuity comes in effect:

- ‘!’ announcement of start or end of daylight saving time
- ‘A’ announcement of leap second insertion
- ‘ ‘ (space, 20h) nothing announced

<ETX> End-Of-Text (ASCII code 03h)
Component Layout Display
Rear Connector Pin Assignment UA509P

<table>
<thead>
<tr>
<th></th>
<th>z</th>
<th>b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>VCC in (+5V)</td>
<td>VCC in (+5V)</td>
<td>VCC in (+5V)</td>
</tr>
<tr>
<td>4</td>
<td>SCL</td>
<td></td>
<td>SDA</td>
</tr>
<tr>
<td>6</td>
<td>Relais I comm.</td>
<td>Relais I on</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Relais I off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Relais II comm.</td>
<td>Relais II on</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Relais II off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Relais III comm.</td>
<td>Relais III on</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Relais III off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>Relais IV off</td>
</tr>
<tr>
<td>22</td>
<td>Relais IV comm.</td>
<td>Relais IV on</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>+20mA akt. out</td>
<td>/P_sec odd</td>
<td>/P_sec even</td>
</tr>
<tr>
<td>28</td>
<td>COM1 RxD in</td>
<td>/P_min odd</td>
<td>/P_min even</td>
</tr>
<tr>
<td>30</td>
<td>COM0 RxD in</td>
<td>COM0 TxD out</td>
<td>COM1 TxD out</td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>