MANUAL

TCR180PEX

IRIG Code controlled Radio Clock

22nd March 2019

Meinberg Funkuhren GmbH & Co. KG
Table of Contents

1. **Imprint** .. 1

2. **Safety instructions for building-in equipment** 2
 2.1 Used Symbols ... 2
 2.2 Safety Hints TCR180PEX ... 3
 2.3 Additional Safety Hints .. 3
 2.4 Cabling ... 4
 2.5 Replacing the Lithium Battery 4

3. **TCR180PEX Features** ... 5

4. **Block diagram TCR180** .. 6

5. **Master oscillator** .. 7

6. **Functional description of receiver** 8
 6.1 Input signals ... 11
 6.2 Input impedance for modulated signals 12
 6.3 Photocoupler input .. 13

7. **Functionality of the generator** 14
 7.1 Time Code Outputs .. 14
 7.1.1 Modulated Outputs ... 14
 7.1.2 Unmodulated Outputs ... 14
 7.2 Pulse outputs ... 15
 7.3 Asynchronous serial port .. 16
 7.4 Frequency synthesizer .. 16
 7.5 Enabling of outputs .. 17
 7.6 DCF77 Emulation .. 17
 7.7 Time capture inputs .. 18

8. **Connectors and LEDs in the bracket** 19
 8.1 Pin assignments of the 9pin D-SUB connector 20
 8.2 D-SUB Pin Assignment of MultiRef Port 21

9. **Putting into operation** .. 22
 9.1 Installing the TCR180PEX in your computer 22
 9.2 Power supply ... 22
 9.3 Configuration of TCR180PEX 22

10. **Firmware Updates** ... 23

11. **Technical specification TCR180PEX** 24

12. **Technical appendix TCR180PEX** 27
 12.1 Abstract of Time Code ... 27
 12.1.1 Description of IRIG-Codes 27
 12.2 Time code Format .. 28
 12.2.1 IRIG Standard Format .. 28
 12.2.2 AFNOR Standard Format 29
 12.3 Time Strings ... 30
 12.3.1 Format of the Meinberg Standard Time String 30
 12.3.2 Format of the Meinberg Capture String 31
 12.3.3 Format of the Uni Erlangen String (NTP) 32
 12.3.4 Format of the SAT Time String 34
12.3.5 Format of the Computime Time String ... 35
12.3.6 Format of the SPA Time String ... 36
12.3.7 Format of the RACAL standard Time String 37
12.3.8 Format of the ION Time String ... 38
12.4 PCI Express (PCIe) .. 39
12.5 Content of the USB stick ... 40

13 Declaration of Conformity ... 41
1 Imprint

Meinberg Funkuhren GmbH & Co. KG
Lange Wand 9, 31812 Bad Pyrmont / Germany

Phone: + 49 (0) 52 81 / 93 09 - 0
Fax: + 49 (0) 52 81 / 93 09 - 230

Internet: https://www.meinbergglobal.com
Mail: info@meinberg.de

Date: 2019-03-22
2 Safety instructions for building-in equipment

2.1 Used Symbols

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Symbol</th>
<th>Beschreibung / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>IEC 60417-5031 Gleichstrom / Direct current</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>IEC 60417-5032 Wechselstrom / Alternating current</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>IEC 60417-5017 Erdungsanschluss / Earth (ground) Terminal</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>IEC 60417-5019 Schutzleiterklemme / Protective Conductor Terminal</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Vorsicht, Risiko eines elektrischen Schlages / Caution, possibility of electric shock</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>ISO 7000-0434 Vorsicht, Risiko einer Gefahr / Caution, Danger</td>
</tr>
</tbody>
</table>

This product is handled as a B2B category product. In order to secure a WEEE compliant waste disposal it has to be returned to the manufacturer.

CE label
This device follows the provisions of the directives 93/68/EEC
2.2 Safety Hints TCR180PEX

This building-in equipment has been designed and tested in accordance with the requirements of Standard IEC60950-1 "Safety of Information Technology Equipment, including Electrical Business Equipment".

During installation of the building-in equipment in an end application (i.e. PC) additional requirements in accordance with Standard IEC60950-1 have to be taken into account.

General Safety instructions

- The building-in equipment has been evaluated for use in office environment (pollution degree 2) and may be only used in this environment. For use in rooms with a higher pollution degree more stringent requirements are applicable.
- The equipment/building-in equipment was evaluated for use in a maximum ambient temperature of 50°C.
- Protection against fire must be assured in the end application.

2.3 Additional Safety Hints

This manual contains important information for the installation and operation of this device as well as for your safety. Make sure to read carefully before installing and commissioning the device.

Certain operating conditions may require the observance of additional safety regulations not covered by this manual. Nonobservance of this manual will lead to a significant abatement of the security provided by this device. Security of the facility where this product is integrated lies in the responsibility of the installer.

The device must be used only for purpose named in this manual, any other use especially operation above the limits specified in this document is considered as improper use.

Keep all documents provided with the device for later reference.

This manual is exclusively for qualified electricians or by a qualified electrician trained personnel who are familiar with the applicable national standards and specifications, in particular for the construction of high voltage devices.
2.4 Cabling

WARNING!
DANGER TO LIFE BY ELECTRICAL SHOCK! NO LIVE WORKING!
Wiring or any other work done the connectors particularly when connectors are opened may never be carried out when the installation is energized. All connectors must be covered to prevent from accidental contact to live parts.

ALWAYS ENSURE A PROPER INSTALLATION!

2.5 Replacing the Lithium Battery

Skilled/Service-Personnel only: Replacing the Lithium Battery
The life time of the lithium battery on the receiver boards is at least 10 years. If the need arises to replace the battery, the following should be noted:

There is a Danger of explosion if the lithium battery is replaced incorrectly. Only identical batteries or batteries recommended by the manufacturer must be used for replacement.

The waste battery has to be disposed as proposed by the manufacturer of the battery.
3 TCR180PEX Features

The board TCR180PEX has been designed as a "low profile" board for computers with PCI Express interface. Data transfer to the computer is done via a single PCI Express lane (x1 board). The TCR180PEX card decodes and generates modulated (AM) and unmodulated (DC Level Shift, DCLS) IRIG-A/B/G, AFNOR NF S87-500, IEEE C37.118, or IEEE 1344 time codes. AM codes are transmitted by modulating the amplitude of a sine wave carrier, unmodulated codes by variation of the width of pulses.

The TCR180PEX is equipped with a high quality oscillator which is disciplined as long as an input signal is available, and provides accurate time in holdover mode if the input signal is disconnected.

Receiver:
Automatic gain control within the receive circuit for unmodulated codes allows decoding of IRIG-A/B/G, AFNOR NF S87-500, IEEE C37.118 or IEEE 1344 signals with a carrier amplitude of 600 mVpp to 8 Vpp. The input stage is electrically insulated and has an impedance of either 50 Ω, 600 Ω or 5 kΩ, selectable by a jumper. Modulated input signals can be supplied via BNC connector in the TCR180PEX's bracket.

Unmodulated (DC Level Shift, DCLS) time codes have to supplied via the card's 9 pin D-Sub connector. The receive circuit is insulated by an onboard photocoupler which can be driven by TTL or RS-422 signals for example. When the card is shipped the contacts of the D-Sub connector are not wired to the photocoupler. Two DIP switches have to be set to the 'ON' position to make the inputs available via the connector.

Generator:
The time code output of the TCR180PEX can generate time codes in IRIG-A/B/G, AFNOR NF S87-500, IEEE C37.118, or IEEE 1344 format. The output signal is available as modulated (3 Vpp / 1 Vpp into 50 Ω) and unmodulated (DC Level Shift, DCLS) signal (TTL into 50 Ω and RS-422). A jumper on the board allows selection of active-high or active-low DCLS output.

Format and UTC offset of the incoming and outgoing time codes can be configured independently, so the TCR180PEX is well-suited for time code conversion.

Optionally the TCR180PEX can be delivered with optical inputs/outputs. The card provides two configurable serial interfaces (RS-232) COM. COM0 is available via the Sub-D connector, COM1 is accessible via an extra ribbon cable connector on the board. Three programmable pulse outputs are available via the D-Sub connector by setting appropriate DIP switches to the 'ON' position.

The extra ribbon cable connector on the board also provides two TTL inputs (CAP0 and CAP1) that can be used to time stamp external, asynchronous trigger slopes. The captured time stamps can be retrieved via the PCI-bus, or can be emitted as ASCII string via one of the serial interfaces.

TCR180PEX provides a synthesizer which can generate output frequencies from 1/8 Hz up to 10 MHz with TTL level into 50 Ω as a sine wave signal.
5 Master oscillator

By default the TCR180PEX is equipped with a TCXO (Temperature Compensated Xtal Oscillator) as master oscillator to provide a good time accuracy and frequency stability. As long as an input signal is supplied the frequency of the oscillator is adjusted from the input signal, and if the input signal is disconnected afterwards the card can still provide accurate time for a certain holdover interval. Optionally the card can be ordered with an OCXO (Oven Controlled Xtal Oscillator) which provides even better frequency stability, and thus provides more accuracy over a longer holdover interval than the TCXO.

All internal timing as well as the output signals are derived from the oscillator. The last known good oscillator adjustment value is stored in non-volatile memory, and is used as default after power-up.

The oscillator’s 10 MHz output frequency is also available with TTL level via a ribbon cable connector.
6 Functional description of receiver

After the received time code has passed a consistency check, the TCR180PEX’s on-board software clock and battery buffered real time clock are synchronized according to the external time reference. If an error or inconsistency is detected in subsequent time code frames, or the input signal is disconnected, the on-board clock switches to holdover mode, where the time is derived from the on-board high quality oscillator which has been disciplined before.

All IRIG and similar time codes provide the time-of-day, and a day-of-year number (1...365/366). When converting the day-of-year number from the incoming time code to a calendar date then the result is ambiguous unless the year number is not known: the day after February 28 can be March 1, but can also be February 29 in case the year is a leap year.

Unfortunately, most of the commonly used IRIG code formats don’t include a year number, in which case the year number used for the computation of the calendar date is retrieved from the battery buffered on-board real time clock.

So care must be taken that the on-board clock has been set to the correct date. The on-board date and time can be adjusted by sending a Meinberg Standard Time string to the serial interface COM0, or via the PCI bus by using the utility programs included in the driver software package.

If the configured time code format does provide a year number (e.g. IEEE 1344, IEEE C37.118, IRIG-Bxx6/Bxx7) then the year number from the time code is used instead of the year number from the on-board real time clock, and the on-board date is set accordingly.

Most of the commonly used IRIG code formats also don’t provide an indicator whether the transported time is UTC, or local time with some offset from UTC. However, the TCR180PEX always needs to derive UTC time from the incoming time code since the card’s on-board time is expected to run on UTC.

If no UTC offset is provided by the time code then a UTC offset parameter on the card first needs to be configured, depending on the time provided by the input signal. When the TCR180PEX is shipped then the UTC parameter is set to “unconfigured”, and as long as this is the case the card doesn’t synchronize to the input signal. So the UTC offset has to be configured first when the card is put into operation. The tools that come with the driver software package given an appropriate hint if this is the case.

Only if the used time code format provides the UTC offset (e.g. IEEE 1344, IEEE C37.118) the card uses the UTC offset from the time code, and thus even synchronizes to the input signal if the card’s UTC parameter is still set to “unconfigured”.

Care must be taken, however, if one of the IEEE 1344 or IEEE C37.118 codes is used: The main difference between these formats is the way the UTC offset is to be applied: subtracted or added. Unfortunately there are 3rd party IRIG devices out there which claim to use a IEEE 1344 code, but in fact handle the UTC offset as specified in IEEE C37.118. This may result in a wrong UTC time derived from the time code if local time is transported. A simple fix is usually to switch the card from one of the IEEE codes to the other one.

The TCR180PEX can automatically convert its on-board UTC time to some local time, including automatic
switching to and from DST year by year according to configurable rules. This is independent from the UTC offset of the incoming time code. The derived local time can be transmitted via the outgoing time code, the serial time strings, or can be read via the PCI interface.

The time zone is entered as offset of seconds from UTC, e.g. for Germany:

\[\text{MEZ} = \text{UTC} + 3600 \text{ sec}, \text{MESZ} = \text{UTC} + 7200 \text{ sec} \]

The specific date of beginning and end of daylight saving can be generated automatically for several years. The receiver calculates the switching times using a simple scheme, e.g. for Germany:

Beginning of daylight saving is the first sunday after March, 25th at two o'clock => MESZ

End of daylight saving is the first sunday after October, 25th at three o'clock => MEZ

The parameters for time zone and switching to/from daylight saving can be set by using the included monitor program. If the same values for beginning and end of daylight saving are entered then no switching to DST is made.

The associated settings can be changed using the configuration software shipped with the driver packages.

Most IRIG codes don’t include an announcement flag for the DST change, or for the insertion of a leap second, so the TCR180PEX will switch into free wheeling mode on such event, and resynchronize a few seconds later.
The board TCR180PEX decodes the following formats:

Please note: all *A* and *G* **Timecodes** are only available **after** warmed up phase of the oscillator!

A002: 1000pps, DC Level Shift pulse width coded, no carrier
BCD time of year

A132: 1000pps, amplitude modulated sine wave signal, 10 kHz carrier frequency
BCD time of year

A003: 1000pps, DC Level Shift pulse width coded, no carrier
BCD time of year, SBS time of day

A133: 1000pps, amplitude modulated sine wave signal, 10 kHz carrier frequency
BCD time of year

B002: 100pps, DC Level Shift pulse width coded, no carrier
BCD time of year

B122: 100pps, amplitude modulated sine wave signal, 1 kHz carrier frequency
BCD time of year

B003: 100pps, DC Level Shift pulse width coded, no carrier
BCD time of year, SBS time of day

B123: 100pps, amplitude modulated sine wave signal, 1 kHz carrier frequency
BCD time of year

B006: 100 pps, DC Level Shift, no carrier
BCD time-of-year, Year

B126: 100 pps, AM sine wave signal, 1 kHz carrier frequency
BCD time-of-year, Year

B007: 100 pps, DC Level Shift, no carrier
BCD time-of-year, Year, SBS time-of-day

B127: 100 pps, AM sine wave signal, 1 kHz carrier frequency
BCD time-of-year, Year, SBS time-of-day

G002: 10 k pps, DC Level Shift, no carrier
BCD time-of-year

G142: 10 k pps, AM sine wave signal, 100 kHz carrier frequency
BCD time-of-year

G006: 10 k pps, DC Level Shift, no carrier
BCD time-of-year, Year

G146: 10 k pps, AM sine wave signal, 100 kHz carrier frequency
BCD time-of-year, Year
AFNOR: Code according to NF S-87500, 100 pps, wave signal,
1kHz carrier frequency, BCD time-of-year, complete date,
SBS time-of-day. Signal level according to NF S-87500

IEEE 1344: Code according to IEEE 1344-1995, 100 pps, AM sine wave signal,
1kHz carrier frequency, BCD time-of-year, SBS time-of-day,
IEEE 1344 extensions for date, timezone, daylight saving and
leap second in control functions (CF) segment.
(also see table 'Assignment of CF segment in IEEE 1344 mode')

IEEE C37.118: Like IEEE 1344 - with UTC offset to be applied reversely

6.1 Input signals

The time code format has to be configured using the monitor software: if an amplitude-modulated signal (IRIG-A/B/G, AFNOR NF S-87500, IEEE C37.118 oder IEEE 1344) is configured then the input signal has to be supplied to the upper BNC connector in the TCR180PEX's bracket. A coaxial, shielded or twistet pair cable should be used.

A pulse width modulated (DC Level Shift, DCLS) signal has to be supplied via the 9-pin D-SUB connector. Two DIP switches have to be set to the "ON" position to wire the contacts of the D-Sub connector to the onboard photocoupler, and an appropriate DCLS time code format has to be configured using the monitor program.

Optionally an optical input can be equipped instead of the modulated input. It is available as ST-connector for GI 50/125 µm or GI 62,5/125 µm gradient fiber.

The board TCR180PEX can’t be used to decode amplitude modulated and DC Level Shift signals simultaneously. Depending on the selected code format, only the signal at the BNC-connector or the D-Sub connector is decoded.
6.2 Input impedance for modulated signals

Except the AFNOR NF S87-500 standard there are no time code specifications for modulated signals which define the output impedance of a generator, or the input impedance of a receiver, so care must be taken that the specifications of this card meet the requirements of 3rd party devices.

The TCR180PEX provides a jumper to set the input impedance for modulated codes to 50 Ω, 600 Ω, or 5 kΩ.

Time code outputs provided by Meinberg devices provide a 50 Ω output impedance to match the transmission requirements with coaxial cable, so the receiver should be set to 50 Ω input impedance if only a single receiver is connected to a generator.

If T-connectors are used to provide several receivers with a single output signal from a generator then the resulting load impedance for the generator may be too low if all receivers have a low input impedance, so it’s more appropriate to set the input impedance of all receivers to 600 Ω. This also meets the requirement of the AFNOR standard, so this is the default setting when the TCR180PEX is shipped.

Only if the external time code generator has a high output impedance (see specifications of the external time code generator) it may be required to set the input impedance to 5 kΩ.

The driver software shows a bar chart for evaluation of the signal level at the receiver input. The following detail of the TCR180PEX’s placeplan of shows the possible jumper settings and the associated input impedance:

![Impedance Settings Diagram]
6.3 Photocoupler input

Pulse width modulated (DC Level Shift) codes are insulated by an onboard photocoupler. The connection scheme is shown below:

MultiRef-Port: Pin Assignment of the D-SUB 9 connector (see chapter D-SUB Pin Assignment of MultiRef Port)

The internal series resistance allows direct connection of input signals with a maximum high level of +12 V (TTL or RS-422 for example). If signals with a higher amplitude are used, an additional external series resistance has to be applied to not exceed the limit of the forward current of the input diode (60 mA). The forward current should not be limited to a value of less than 10 mA to ensure safe switching of the photocoupler.
7 Functionality of the generator

The time code generator of TCR180PEX is based on a DDS (Direct Digital Synthesis) frequency generator which derives the sine carrier of the modulated code from the reference clock of the master oscillator. The modulation of carrier amplitude (modulated codes) or pulse duration (unmodulated, DC level shift codes) is synchronized to the generated pulse-per-second (PPS) signal derived from the software clock.

The generated time code is independent from the settings for the received code. Thus it's possible to generate an output signal with a different format and UTC offset than the input signal.

7.1 Time Code Outputs

TCR180PEX provides modulated and unmodulated (DC level shift) outputs. As an option, an optical output can be equipped instead of the modulated output. It is available as ST-connector for GI 50/125\,\mu m or GI 62,5/125\,\mu m gradient fiber.

7.1.1 Modulated Outputs

The amplitude-modulated sine carrier is available a BNC-coaxial-plug connector in the bracket. The signal amplitude is 3Vpp (MARK) and 1Vpp (SPACE) into 50\,Ohm. The encoding is made by the number of MARK-amplitudes during ten carrier waves. The following agreements are valid:

- binary '0': 2 Mark – amplitudes, 8 SPACE-amplitudes
- binary '1': 5 Mark – amplitudes, 5 SPACE-amplitudes
- position-identifier: 8 Mark – amplitudes, 2 SPACE-amplitudes

7.1.2 Unmodulated Outputs

The pulse width modulated DC-signals are coexistent to the modulated output and are available with TTL level into 50 Ohm and as RS-422 signal. After bringing DIP-switches into the ‘ON’ position, these outputs are available at the D-Sub connector. The active state of the unmodulated outputs can be set up by a jumper on the board TCR180PEX.
7.2 Pulse outputs

The pulse generator of TCR180PEX provide three independent channels (PPO0, PPO1, PPO2). All of these TTL outputs can be mapped to pins at the 9-pin connector at the rear slot cover by using a DIP switch. Each output can be switched according to different, predefined conditions. The pulse length can be configured from 10 msec to 10 sec in steps of 10 msec. The output signal level can be inverted, if required.

By default when shipped the pulse outputs are only enabled after the receiver has synchronized after power-up. However, the settings can be changed so that outputs are always enabled immediately after power-up. The pulse outputs can be configured using the monitor program shipped with the driver software package. The following modes can be configured independently for each channel:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer mode</td>
<td>Three "on" and "off" time pairs per day</td>
</tr>
<tr>
<td>Cyclic mode</td>
<td>Periodically repeated pulses. A cycle time of two seconds would generate a pulse at 0:00:00, 0:00:02, 0:00:04 etc.</td>
</tr>
<tr>
<td>DCF77-Simulation mode</td>
<td>Outputs simulated DCF77-compatible time marks, representing the local time configured on the device.</td>
</tr>
<tr>
<td>Single Shot Mode</td>
<td>A single pulse of programmable length is generated once a day at a programmable point of time.</td>
</tr>
<tr>
<td>Per Sec.</td>
<td>Pulsates once per second, minute, or hour aligned with second boundary</td>
</tr>
<tr>
<td>Per Min.</td>
<td>Synthesizer: Frequency output 1/8 Hz up to 10 MHz</td>
</tr>
<tr>
<td>Per Hr. modes</td>
<td>Time Codes: Generation of Time Codes as described in chapter "Time Codes"</td>
</tr>
<tr>
<td>Idle-mode</td>
<td>The output is inactive</td>
</tr>
</tbody>
</table>

The default configuration for the pulse outputs is:

- **PPO0**: Pulse each second (PPS), active HIGH, pulse duration 200 msec
- **PPO1**: Pulse each minute (PPM), active HIGH, pulse duration 200 msec
- **PPO2**: DCF77 Simulation
7.3 Asynchronous serial port

Two asynchronous serial interfaces (RS-232) labelled COM0 and COM1 are provided by the TCR180PEX. Only COM0 is available at the rear panel slot cover, COM1 is accessible via the second ribbon cable connector on the card. The monitor program can be used to configure the outputs. In the default mode of operation, the serial outputs are disabled until the receiver has synchronized after power-up. However, they can be configured to be enabled immediately after power-up.

Transmission speed, framing and mode of operation can be configured individually for each port. Both of the ports can be configured to transmit either time strings (once per second, once per minute, or on request with ASCII '?' only), or to transmit capture strings (automatically when available, or on request). The format of the output strings is ASCII, see the technical specifications at the end of this document for details.

Please note: If a serial interface sends capture events automatically, they can’t be read via PCI-bus, because they are deleted from the buffer memory after transmission.

7.4 Frequency synthesizer

The frequency synthesizer can generate output frequencies of 1/8 Hz up to 10 MHz as sine wave signal and with TTL-level into 50 Ohm. If a frequency below 1 kHz has been selected the following decimal places lead to real fractions of Hertz:

0.1	1/8 Hz
0.3	1/3 Hz
0.6	2/3 Hz

The synthesizer is turned off if a frequency of 0 Hz is configured.

If the output frequency is below 10 kHz the phase of the output signal can be set from -360° to +360° with a resolution of 0.1°.
7.5 Enabling of outputs

By default the time code output, the pulse outputs, the serial outputs, and the frequency synthesizer are disabled after power up until the receiver is synchronized. However, the monitor software can be used to configure each group of outputs so that they are always enabled immediately after power-up.

Please note: Enabling of the time code output and the programmable pulses are controlled by the same setting.

7.6 DCF77 Emulation

The time code receiver TCR180PEX generates TTL level time marks (active HIGH) which are compatible with the time marks broadcast by the German long wave transmitter DCF77. This long wave transmitter which is installed in Mainflingen near Frankfurt/Germany transmits the legal reference time of the Federal Republic of Germany: time of day, date of month and day of week in BCD coded second pulses. Once every minute the complete time information is transmitted. This time information always contains the announcement of daylight savings and leap seconds.

The coding scheme is given below:

Time marks start at the beginning of new second. If a binary “0” is to be transmitted, the length of the corresponding time mark is 100 msec, if a binary “1” is transmitted, the time mark has a length of 200 msec. The information on the current date and time as well as some parity and status bits can be decoded from the time marks of the 15th up to the 58th second every minute. The absence of any time mark at the 59th second of a minute signals that a new minute will begin with the next time mark.
7.7 Time capture inputs

The TCR180PEX provides two time capture inputs called User Capture 0 and 1 (CAP0 and CAP1) which can be mapped to pins at the 9 pin connector in the rear panel. These inputs can be used to time stamp trigger slopes of asynchronous external hardware signals. A falling TTL slope at one of these inputs lets the card save the current on-board time in its on-board FIFO buffer which can hold up to more than 500 entries.

Capture events can be retrieved from the FIFO buffer either as ASCII string sent automatically or on request via one of the card’s serial ports, or via the PCI bus using an API call, which is much faster than serial output and thus allows for higher continuous capture rates.

The format of the output string is described in the technical specifications at the end of this document. If the capture buffer is full a message "** capture buffer full" is transmitted, if the interval between two captures is too short the warning "** capture overrun" is being sent via the serial port.
8 Connectors and LEDs in the bracket

The bracket of the board includes the BNC connector for the amplitude modulated time codes, four LEDs and a 9 pin D-Sub-plug.

Pressing the hidden key BSL is required for activating the Bootstrap-Loader before updating the firmware.

The 9 pin D-Sub-connector is wired to the board's serial port. Pin assignment can be seen from the figure below. This port can not be used as serial port for the computer. Instead, the clock uses the port to send out Meinberg’s standard time string in order to control an external display or some other external device. The string is sent out once per second, once per minute or if requested by an incoming ASCII “?”.

It is also possible to change the board time by sending such a string towards the clock. Transmission speed, framing and mode of operation can be modified using the monitor software. The string format is described in the section ‘Technical Specifications’ at the end of this manual.

LED Indicators

1. blue: while the receiver passes the initialization phase
 off: Oscillator not warmed up
 green: the internal timing of TCR180PEX is synchronized to the received time code (Lock)

2. green: correct time code detected
 red: no correct time code detected
 yellow: TCR180PEX synchronized by Multi.Ref. source
 yellow/green (flashing): Holdover mode (Multi.Ref), IRIG Code available
 yellow/red (flashing): Holdover mode (Multi.Ref), IRIG Code not available

3. green: telegramm consistent
 red: telegramm inconsistent
 yellow (flashing): Jitter too large

4. red: the internal timing of TCR180PEX is in holdover mode
 off: the internal timing of TCR180PEX is synchronized to the received time code (Lock)
8.1 Pin assignments of the 9pin D-SUB connector

By default only the signals needed for the serial port COM0 are mapped to the pins of the connector. Whenever one of the additional signals is to be used the signal must be wired to a pin by putting the appropriate lever of a DIP switch to the ON position.

The table below shows the pin assignments for the standard D-SUB9 connector and the DIP switch lever assigned to each of the signals. Care must be taken when mapping a signal to Pin 1, Pin 4, Pin 7 and Pin 9 of the connector, because one of two different signals can be mapped to these Pins. Only one of the associated DIP switches may be set to ON at the same time:

<table>
<thead>
<tr>
<th>9pin D-SUB</th>
<th>Signal</th>
<th>Signal Level</th>
<th>DIP-Switch ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC out</td>
<td>+5 V</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>PPO_0 (PPS) out</td>
<td>RS232</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>RxD 0 in</td>
<td>RS232</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>TxD 0 out</td>
<td>RS232</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>PPO_1 (PPM) out</td>
<td>TTL</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>10 MHz out</td>
<td>TTL</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>CAP 0 in</td>
<td>TTL</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>CAP 1 in</td>
<td>TTL</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>/ DCLS out (B)</td>
<td>RS422</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>PPO_0 (PPS) out</td>
<td>TTL</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>PPO_2 (DCF) out</td>
<td>TTL</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>DCLS out (A)</td>
<td>RS422</td>
<td>6</td>
</tr>
</tbody>
</table>

Standard Port

DIP 8 must be OFF
DIP 1 must be OFF
DIP 10 must be OFF
DIP 5 must be OFF
DIP 7 must be OFF
DIP 3 must be OFF
DIP 6 must be OFF
DIP 9 must be OFF
8.2 D-SUB Pin Assignment of MultiRef Port

Connection of ribbon cable
To lead the “Multi-ref” signals through the SUB-D connector, the ribbon cable must be plugged to the appropriate boxed header:

Multi.Ref. Port

<table>
<thead>
<tr>
<th>Spin D-SUB</th>
<th>Signal</th>
<th>Signal Level</th>
<th>DIP-Switch ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC out</td>
<td>+5 V</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>PPS in</td>
<td>TTL</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>RxD 1 in</td>
<td>RS232</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>TxD 1 out</td>
<td>RS232</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>PPO_1 (PPM) out</td>
<td>TTL</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>10 MHz out</td>
<td>TTL</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>+ DCLS in</td>
<td>photocoupler</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>- DCLS in</td>
<td>photocoupler</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>PPO_0 (PPS) out</td>
<td>TTL</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>DCLS out</td>
<td>TTL into 50 Ohm</td>
<td>9</td>
</tr>
</tbody>
</table>

Notes:
- DIP 7 must be OFF
- DIP 1 must be OFF
- DIP 10 must be OFF
- DIP 5 must be OFF
- DIP 6 must be OFF
9 Putting into operation

To achieve correct operation of the board, the following points must be observed.

9.1 Installing the TCR180PEX in your computer

Every PCI Express board is a plug & play board. After power-up, the computer’s BIOS assigns resources like I/O ports and interrupt numbers to the board, the user does not need to take care of the assignments. The programs shipped with the board retrieve the settings from the BIOS.

The computer has to be turned off and its case must be opened. The radio clock can be installed in any PCI Express slot not used yet. The rear plane must be removed before the board can be plugged in carefully. The computer’s case should be closed again and the time code signal can be connected to the coaxial plug at the clock’s rear slot cover. After the computer has been restarted, the monitor software can be run in order to check the clock’s configuration. The computer’s case should be closed again and the time code signal must be connected to the appropriate connector.

After the board has been mounted and connected, the system is ready to operate. About 10 seconds after power-up the receiver’s TCXO operates with the required accuracy.

9.2 Power supply

All power supplies needed by TCR180PEX are delivered by the PCI-(Express) bus.

9.3 Configuration of TCR180PEX

The selection of the time code, configuration of the serial interface and a possible offset of the received time to UTC must be set up by the monitor software via the PCIExpress bus. In contrast to AFNOR NF S87-500 the IRIG telegram contains only the day of year (1...366) instead of a complete date. To ensure correct function of TCR180PEX, the date stored in the realtime clock of the board must be set when using IRIG codes therefore. This setting can be done by a terminal software also.

! IMPORTANT!

If the time zone of the received time code is not UTC, the local offset to UTC must be configured to ensure correct function of the driver software. If the local time zone is MEZ for example, the board must be set to a local offset of ‘+60min’ (MEZ = UTC + 1 h).

The serial interface COM0 can be configured to send a time telegram with reference to UTC or to the received local time.

10 Firmware Updates

Whenever the on-board software must be upgraded or modified, the new firmware can be downloaded to the internal flash memory via the clock’s serial port COM0. There is no need to open the computer case and insert a new EPROM.

A loader program shipped together with the file containing the image of the new firmware sends the new firmware from one of the computer’s serial ports to the clock’s serial port COM0. The bootstrap loader does not depend on the contents of the flash memory, so if the update procedure is interrupted, it can easily be repeated.

The contents of the program memory will not be modified until the loader program has sent the command to erase the flash memory. So if the button has been pressed accidentally, the system will be ready to operate again after the computer has been turned off and then on again.
11 Technical specification TCR180PEX

RECEIVER INPUT:
AM-input (BNC-connector):
- insulated by a transformer
- impedance settable 50 Ω, 600 Ω, 5 kΩ
- input signal: 600 mV_{pp} to 8 V_{pp} (Mark)
- other ranges on request

DC Level Shift input (D-Sub-connector):
- insulated by photocoupler
- internal series resistance: 220 Ω
- maximum forward current: 60 mA
- diode forward voltage: 1.0 V...1.3 V

optional input(option):
- optical receive power: min. 3µW
- optical connector: ST-connector
 - for GI 50/125 µm
 - or GI 62,5/125 µm
 - gradient fiber

DECODING:
- decoding of the following telegrams possible:
 - IRIG-A002 / A132 / A003 / A133 / A006 / A136 / A007 / A137
 - IRIG-B002 / B122 / B003 / B123 / B006 / B126 / B007 / B127
 - IRIG-G002 / G142 / G006 / G146
 - AFNOR NF S87-500
 - IEEE C37.118
 - IEEE 1344

ACCURACY OF TIME BASE:
- < 500 nsec compared to IRIG reference marker

REQUIRED ACCURACY OF TIME CODE SOURCE:
- +/- 100ppm

HOLDOVER MODE:
- automatic switching to crystal time base
- accuracy approximately 1*10⁻⁸
- if decoder has been synchronous for more than 1h

BACKUP-BATTERY:
- if the power supply fails, an onboard realtime clock keeps time and date information
 - important system parameters are stored in the RAM of the system lifetime of the Lithium battery
 - at least 10 years

GENERATOR OUTPUTS:
- modulated output:
 - unbalanced sine carrier, 1 kHz
 - 3V_{pp}(MARK), 1V_{pp} (SPACE) into 50 Ω

- unmodulated outputs(DCLS):
 - TTL into 50 Ω
 - RS-422
 - active high or low selectable by jumper

- optical output (option):
 - optical power: typ. 15µW
 - optical connector: ST-connector
for Gl 50/125µm
or Gl 62,5/125µm
gradient fiber

PULSE OUTPUTS: three programmable outputs, TTL level
Default settings:
active only 'if sync'
PPO_0: change of seconds (PPS)
pulse duration 200 msec
valid on rising edge
PPO_1: change of minute (PPM)
pulse duration 200 msec
valid on rising edge
PPO_2: DCF simulation

ACCURACY OF PULSES: better than +/- 1 µsec after synchronization and 20 minutes of operation

SERIAL PORT: configurable RS-232 interface
baudrates: 300 Bd...115200 Bd
framing: 7E2, 8N1, 8N2, 8E1
7N2, 7E1, 801
mode of operation: string per second
string per minute
string on request
time telegram: Meinberg Standard
Uni Erlangen, SAT
Meinberg Capture, ION
Computime, SPA, RACAL

CAPTURE INPUTS: triggered by falling TTL slope
pulse repetition time: 1.5 msec min.
resolution: 800 nsec
output of trigger event via PCI-bus or serial interface

MASTER OSCILLATOR: TCXO
(Temperature Compensated Xtal Oscillator)
accuracy compared to IRIG-reference:
sync. and 20 min. of operation: ± 5(10⁻⁹)
first 20 min. after sync.: ± 1(10⁻⁸)

accuracy of oscillator:
holdover, 1 day: ± 1(10⁻⁷)
holdover, 1 year: ± 1(10⁻⁶)

short term stability:
≤ 10 sec, synchronized: ± 2(10⁻⁵)
≤ 10 sec, holdover: ± 5(10⁻⁵)

temperature dependant drift:
holdover: ± 1(10⁻⁶)

phase noise:
1 Hz besides carrier: -60 dB/Hz
10 Hz besides carrier: -90 dB/Hz
100 Hz besides carrier: -120 dB/Hz
1 kHz besides carrier: -130 dB/Hz
FREQUENCY SYNTHESIZER:
output frequency: 1/8 Hz up to 10MHz
accuracy: like system accuracy

1/8 Hz to 10 kHz: Phase synchronous to pulse per second
10 kHz to 10 MHz: deviation of frequency < 0.0047 Hz
outputs: TTL into 50 Ω
sine wave 1.5Vrms
output impedance 200 Ω

RELIABILITY OF OPERATION:
microprocessor supervisory circuit provides watchdog timer, power supply monitoring and backup battery switchover software watchdog monitors correct program flow and generates a reset in case of error detection

INITIALIZATION:
software and realtime clock can be set by a serial Meinberg Standard Telegram via COM0 or the PCI-Express bus

BUS-INTERFACE:
Single lane (x1) PCI Express (PCIe) Interface compatible to PCI Express specification r1.0a

DATA FORMAT:
binary, byte serial

OUTPUTS:
pulse per second (PPS): TTL- and RS-232 level positive pulse, pulse duration 200 msec
pulse per minute (PPM): TTL level positive pulse, pulse duration 200 msec

POWER REQUIREMENT:
+3.3 V: ≈ 250 mA
+12 V : ≈ 90 mA
power supplies provided by PCI Express interface

Board DIMENSION: "low profile" slot card (69 mm x 150 mm)

AMBIENT TEMPERATURE: 0 ... 50°C

HUMIDITY: max. 85 %
12.1 Abstract of Time Code

The transmission of coded timing signals began to take on widespread importance in the early 1950’s. Especially the US missile and space programs were the forces behind the development of these time codes, which were used for the correlation of data. The definition of time code formats was completely arbitrary and left to the individual ideas of each design engineer. Hundreds of different time codes were formed, some of which were standardized by the “Inter Range Instrumentation Group” (IRIG) in the early 60’s.

The TCR180PEX supports decoding and generating of IRIG-A, IRIG-B, IRIG-G, AFNOR NF S87-500, IEEE C37.118 and IEEE 1344.

12.1.1 Description of IRIG-Codes

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Format A 1 k pps</td>
</tr>
<tr>
<td>B</td>
<td>Format B 100 pps</td>
</tr>
<tr>
<td>C</td>
<td>Format D 1 ppm</td>
</tr>
<tr>
<td>D</td>
<td>Format E 10 pps</td>
</tr>
<tr>
<td>E</td>
<td>Format F 10 k pps</td>
</tr>
<tr>
<td>F</td>
<td>Format G 1 pps</td>
</tr>
</tbody>
</table>

Modulation Frequency:

- 0: Pulse width code
- 1: Sine wave, amplitude modulated
- 2: Manchester modulated

Frequency/Resolution:

- 0: No carrier/index count interval
- 1: 100 Hz/10 ms
- 2: 1 kHz/1 ms
- 3: 10 kHz/0.1 ms
- 4: 100 kHz/10 ms
- 5: 1 MHz/1 ms

Coded Expressions:

- 0: BCD\text{TOY}, CF, SBS
- 1: BCD\text{TOY}, CF
- 2: BCD\text{TOY}
- 3: BCD\text{TOY}, SBS
- 4: BCD\text{TOY}, BCD\text{YEAR}, CF, SBS
- 5: BCD\text{TOY}, BCD\text{YEAR}, CF
- 6: BCD\text{TOY}, BCD\text{YEAR}
- 7: BCD\text{TOY}, BCD\text{YEAR}, SBS

The signal designated as A137 is deciphered as follows: Format A, Sine wave (amplitude modulated), 10 kHz carrier/0.1 ms resolution, and Coded expressions BCD\text{TOY}, BCD\text{YEAR}, and SBS.
12.2 Time code Format

12.2.1 IRIG Standard Format
12.2.2 AFNOR Standard Format
12.3 Time Strings

12.3.1 Format of the Meinberg Standard Time String

The Meinberg Standard Time String is a sequence of 32 ASCII characters starting with the STX (start-of-text) character and ending with the ETX (end-of-text) character. The format is:

<STX>D:dd.mm.yy;T:w;U:hh.mm.ss;uvxy<ETX>

The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

<STX> Start-Of-Text, ASCII Code 02h

sending with one bit accuracy at change of second

dd.mm.yy the current date:

dd day of month (01..31)

mm month (01..12)

yy year of

the century (00..99)

w the day of

the week (1..7, 1 = Monday)

hh.mm.ss the current time:

hh hours (00..23)

mm minutes (00..59)

ss seconds (00..59, or 60 while leap second)

uv clock status characters (depending on clock type):

u: ‘#’ GPS: clock is running free (without exact synchr.)

DCF77: clock has not synchronized after reset

(space, 20h)

GPS: clock is synchronous (base accuracy is reached)

DCF77: clock has synchronized after reset

v: ‘*’ GPS: receiver has not checked its position

DCF77: clock currently runs on XTAL

(space, 20h)

GPS: receiver has determined its position

DCF77: clock is synchronized with transmitter

x time zone indicator:

‘U’ UTC Universal Time Coordinated, formerly GMT

CET European Standard Time, daylight saving disabled

‘S’ (CEST) European Summertime, daylight saving enabled

y announcement of discontinuity of time, enabled during last hour before discontinuity comes in effect:

‘!’ announcement of start or end of daylight saving time

‘A’ announcement of leap second insertion

‘’ (space, 20h) nothing announced

<ETX> End-Of-Text, ASCII Code 03h
12.3.2 Format of the Meinberg Capture String

The Meinberg Capture String is a sequence of 31 ASCII characters terminated by a CR/LF (Carriage Return/Line Feed) combination. The format is:

\[
\text{CH}_x_tt.mm.jj_hh:mm:ss.fffffff<CR><LF>
\]

The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

- **x**: 0 or 1 corresponding on the number of the capture input
- **ASCII space 20h**

dd.mm.yy the capture date:

- **dd**: day of month (01..31)
- **mm**: month (01..12)
- **yy**: year of the century (00..99)

hh:mm:ss.fffffff the capture time:

- **hh**: hours (00..23)
- **mm**: minutes (00..59)
- **ss**: seconds (00..59, or 60 while leap second)
- **fffffff**: fractions of second, 7 digits

- **<CR>**: Carriage Return, ASCII Code 0Dh
- **<LF>**: Line Feed, ASCII Code 0Ah
12.3.3 Format of the Uni Erlangen String (NTP)

The time string Uni Erlangen (NTP) of a GPS clock is a sequence of 66 ASCII characters starting with the STX (start-of-text) character and ending with the ETX (end-of-text) character. The format is:

\[<\text{STX}>tt.mm;jj; w; hh:mm:ss; voo:oo; acdfg i;bbb.bbbbn lll.lllle hhhhm<\text{ETX}>\]

The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

- **<STX>** Start-Of-Text, ASCII Code 02h
- Sending with one bit accuracy at change of second

- **dd.mm.yy** the current date:
 - *dd* day of month (01..31)
 - *mm* month (01..12)
 - *yy* year of the century (00..99)

- **w** the day of the week (1..7, 1 = Monday)

- **hh.mm.ss** the current time:
 - *hh* hours (00..23)
 - *mm* minutes (00..59)
 - *ss* seconds (00..59, or 60 while leap second)

- **v** sign of the offset of local timezone related to UTC

- **oo:oo** offset of local timezone related to UTC in hours and minutes

- **ac** clock status characters:
 - *a:* '#' clock has not synchronized after reset
 - ' ' (space, 20h) clock has synchronized after reset
 - *c:* '*' GPS receiver has not checked its position
 - ' ' (space, 20h) GPS receiver has determined its position

- **d** time zone indicator:
 - 'S' CEST European Summertime, daylight saving enabled
 - ' ' CET European Standard Time, daylight saving disabled

- **f** announcement of discontinuity of time, enabled during last hour before discontinuity comes in effect:
 - '!' announcement of start or end of daylight saving time
 - ' ' (space, 20h) nothing announced

- **g** announcement of discontinuity of time, enabled during last hour before discontinuity comes in effect:
 - 'A' announcement of leap second insertion
 - ' ' (space, 20h) nothing announced

- **i** leap second insertion
 - 'L' leap second is actually inserted
 - ' ' (active only in 60th sec.)
 - ' ' (space, 20h) no leap second is inserted

- **bbb.bbbb** latitude of receiver position in degrees
 - Leading signs are replaced by a space character (20h)

- **n** latitude, the following characters are possible:
 - 'N' north of equator
S' south d. equator

llllll longitude of receiver position in degrees
leading signs are replaced by a space character (20h)

e longitude, the following characters are possible:
 'E' east of Greenwich
 'W' west of Greenwich

hhhh altitude above WGS84 ellipsoid in meters
leading signs are replaced by a space character (20h)

<ETX> End-Of-Text, ASCII Code 03h
12.3.4 Format of the SAT Time String

The SAT Time String is a sequence of 29 ASCII characters starting with the STX (start-of-text) character and ending with the ETX (end-of-text) character. The format is:

\[<\text{STX}>dd.mm.yy/w/hh:mm:ssxxxxuv<\text{ETX}>\]

The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

\(<\text{STX}>\quad \text{Start-Of-Text, ASCII Code 02h}
\)

\(\text{sending with one bit accuracy at change of second}\)

\(\text{dd.mm.yy the current date:}\)
\(\text{dd day of month (01..31)}\)
\(\text{mm month (01..12)}\)
\(\text{yy year of the century (00..99)}\)
\(\text{w the day of the week (1..7, 1 = Monday)}\)

\(\text{hh:mm:ss the current time:}\)
\(\text{hh hours (00..23)}\)
\(\text{mm minutes (00..59)}\)
\(\text{ss seconds (00..59, or 60 while leap second)}\)

\(\text{xxxx time zone indicator:}\)
\(\text{‘UTC’ Universal Time Coordinated, formerly GMT}\)
\(\text{‘CET’ European Standard Time, daylight saving disabled}\)
\(\text{‘CEST’ European Summertime, daylight saving enabled}\)

\(\text{u clock status characters:}\)
\(\text{‘#’ clock has not synchronized after reset}\)
\(\text{‘ ’ (space, 20h) clock has synchronized after reset}\)

\(\text{v announcement of discontinuity of time, enabled during last hour before discontinuity comes in effect:}\)
\(\text{‘!’ announcement of start or end of daylight saving time}\)
\(\text{‘ ‘ (space, 20h) nothing announced}\)

\(<\text{CR}>\quad \text{Carriage Return, ASCII Code 0Dh}\)

\(<\text{LF}>\quad \text{Line Feed, ASCII Code 0Ah}\)

\(<\text{ETX}>\quad \text{End-Of-Text, ASCII Code 03h}\)
12.3.5 Format of the Computime Time String

The Computime time string is a sequence of 24 ASCII characters starting with the T character and ending with the LF (line feed, ASCII Code 0Ah) character. The format is:

\[T:yy:mm:dd:ww:hh:mm:ss<CR><LF> \]

The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

T
- Start character
- sending with one bit accuracy at change of second

yy:mm:dd
- the current date:
 - **yy** year of the century (00..99)
 - **mm** month (01..12)
 - **dd** day of month (01..31)
 - **ww** the day of the week (01..07, 01 = monday)

hh:mm:ss
- the current time:
 - **hh** hours (00..23)
 - **mm** minutes (00..59)
 - **ss** seconds (00..59, or 60 while leap second)

<CR>
- Carriage Return, ASCII Code 0Dh

<LF>
- Line Feed, ASCII Code 0Ah
12.3.6 Format of the SPA Time String

The ABB SPA Time String is a sequence of 32 ASCII characters starting with the characters ">900WD" and ending with the <CR> (Carriage Return) character. The format is:

>900WD:jj-mm-tt_hh.mm;ss.fff:cc<CR>

The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

jj-mm-tt the current date:
jj year of the century (00..99)
mm month (01..12)
tt day of month (01..31)

 Space (ASCII-code 20h)

hh.mm;ss.fff the current time:
hh hours (00..23)
mm minutes (00..59)
ss seconds (00..59, or 60 while leap second)
fff milliseconds (000..999)

cc Checksum. EXCLUSIVE-OR result of the previous characters, displayed as a HEX byte (2 ASCII characters 0..9 or A..F)

<CR> Carriage Return ASCII Code 0Dh
12.3.7 Format of the RACAL standard Time String

The RACAL standard Time String is a sequence of 16 ASCII characters terminated by a X (58h) character and ending with the CR (Carriage Return, ASCII Code 0Dh) character. The format is:

\[<X><G><U>yyymmddhhmmss<CR> \]

The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

- **<X>** Control character code 58h
 - sending with one bit accuracy at change of second
- **<G>** Control character code 47h
- **<U>** Control character code 55h

yymmdd the current date:
- **yy** year of the century (00..99)
- **mm** month (01..12)
- **dd** day of month (01..31)

hh:mm:ss the current time:
- **hh** hours (00..23)
- **mm** minutes (00..59)
- **ss** seconds (00..59, or 60 while leap second)

<CR> Carriage Return, ASCII code 0Dh

Interface parameters: 7 Databits, 1 Stopbit, odd Parity, 9600 Bd
12.3.8 Format of the ION Time String

The ION time string is a sequence of 16 ASCII characters starting with the SOH (Start of Header) ASCII control character and ending with the LF (line feed, ASCII Code 0Ah) character. The format is:

\[<\text{SOH}>\text{ddd}:\text{hh}:\text{mm}:\text{ss}q<\text{CR}><\text{LF}>\]

The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:

- **<SOH>** Start of Header (ASCII control character)
 - sending with one bit accuracy at change of second

- **ddd** day of year (001..366)

- **hh:mm:ss** the current time:
 - **hh** hours (00..23)
 - **mm** minutes (00..59)
 - **ss** seconds (00..59, or 60 while leap second)

- **q** Quality indicator
 - (space) Time Sync (GPS lock)
 - (?) no Time Sync (GPS fail)

- **<CR>** Carriage-return (ASCII code 0Dh)

- **<LF>** Line-Feed (ASCII code 0Ah)
12.4 PCI Express (PCIe)

The main technical innovation of PCI Express is a serial data transmission compared to the parallel interfaces of other computer bus systems like ISA, PCI and PCI-X.

PCI Express defines a serial point-to-point connection, the so-called Link:

![Diagram of a Link](image)

The data transfer within a Link is done via Lanes, representing one wire pair for sending and one wire pair for receiving data:

![Diagram of Lanes](image)

This design leads to a full duplex connection clocked with 2.5 GHz capable of transferring a data volume of 250 MB/s per lane in each direction. Higher bandwidth is implemented by using multiple lanes simultaneously. A PCI Express x16 slot for example uses sixteen lanes providing a data volume of 4 GB/s. For comparison: when using conventional PCI the maximum data transfer rate is 133 MB/s, PCI-X allows 1 GB/s but only in one direction respectively.
12.5 Content of the USB stick

Besides this manual, the provided USB stick includes a setup program for the monitor software MBGMON. This utility can be used to configure Meinberg receivers via their serial ports and to display status information of the module.

If the USB storage device is lost, the installation program can be downloaded free of charge from the Internet at: https://www.meinbergglobal.com/english/sw/
13 Declaration of Conformity

Konformitätserklärung
Doc ID: TCR180PEX-2019-03-22

Hersteller
Manufacturer
Meinberg Funkuhren GmbH & Co. KG
Lange Wand 9, D-31812 Bad Pyrmont

erklärt in alleiniger Verantwortung, dass das Produkt,
declares under its sole responsibility, that the product

Produktbezeichnung
Product Designation
TCR180PEX

auf das sich diese Erklärung bezieht, mit den folgenden Normen und Richtlinien übereinstimmt:
to which this declaration relates is in conformity with the following standards and provisions of the directives:

EMV – Richtlinie
EMC – Directive
DIN EN 61000-6-2:2005
DIN EN 61000-6-3:2007 + A1:2011
DIN EN 55032:2012
DIN EN 55024:2010

2014/30/EU

Niederspannungsrichtlinie
Low-voltage Directive

2014/35/EU

RoHS – Richtlinie
RoHS – Directive
DIN EN 50581:2012

2011/65/EU

Bad Pyrmont, den 2019-03-22