
MANUAL

SyncFire 1500

High-Performance NTP Server

Meinberg Funkuhren GmbH & Co. KG

Front view (Frontansicht) SyncFire 1500

Einschalttaste 8P8C (RJ45)-Anschluss für serielle (RS-232) Terminalverbindung

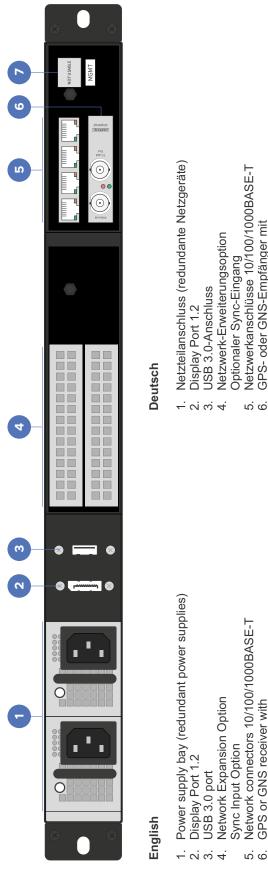
USB 3.0-Anschluss

- 7 6 4 6 9

Power On button 8P8C (RJ45) connector for serial (RS-232) terminal connection

USB 3.0 port

English


LC-Display, 4 x 20 characters Function buttons: 4-way navigation; F1, F2, OK, ESC Status LEDs: Ref. Time, Time Service, Network, Alarm

4. 3. 9

Deutsch

LC-Display, 4 x 20 Zeichen Funktionstasten: 4-Wege-Navigation; F1, F2, OK, ESC Status-LEDs: Ref. Time, Time Service, Network, Alarm

Rear view (Rückansicht) SyncFire 1500

- 6.5
- GPS- oder GNS-Empfänger mit AM-Zeitcode-Ausgang (IRIG, AFNOR NF S87-500, IEC 37.118)

AM time code output (IRIG, AFNOR NF S87-500, IEC 37.118) Network management port (disabled)

GPS or GNS receiver with

Netzwerk-Management-Anschluss (nicht verbunden)

Table of Contents

1	Imprint and Legal Information			
2	Change Log	2		
3	Copyright and Liability Exclusion	3		
4	Presentation Conventions in this Manual 4.1 Conventions for the Presentation of Critical Safety Warnings	4 5 5		
5	Important Safety Information 5.1 Appropriate Usage	77 8 6 10 12 12 13 13		
6	Important Product Information 6.1 CE Marking	14 14 14 15 15		
7	Introduction to the SyncFire 1500 7.1 Why Use a Network Time Server?	1 7		
8	Installing Your GNSS Antennas8.1Selecting the Antenna Location8.2Installation of the GPSANTv2 Antenna8.3Installation of the Multi-GNSS Antenna8.4Antenna Cable8.5Surge Protection and Grounding	19 21 23 24 28		
9	SyncFire 1500 Indicators and Function Keys on the Front Panel	33		
10	SyncFire 1500 Rear Connectors	35		
11	Booting the System for the First Time	37		
12	Initialization Process of the GPS Receiver	38		
13	Configuration and Monitoring via the Web Interface 13.1 Initial Configuration via the Web Interface	39 40 41		

		13.1.2 Clock: Time Zone	42
		13.1.3 Clock: Miscellaneous	43
14	Techi	nical Appendix	44
	14.1	Technical Specifications: SyncFire 1500	44
	14.2	10/100/1000BASE-T (Gigabit) Network Interface	47
	14.3	10 Gigabit SFP+	47
		14.3.1 SFP Transceivers	48
	14.4	Antenna Input: GPS Receiver	49
	14.5	Antenna Input: GNS Receiver	50
	14.6	AM Timecode Output	51
	14.7	Oregano syn1588 PCle NIC	52
	14.8	Technical Specifications: GPSANTv2 Antenna	53
	14.9	Technical Specifications: 40 dB Multi-GNSS Antenna for Fixed-Location Applications	56
	14.10		57
	14.11		58
	14.12	How Satellite Navigation Works	59
		14.12.1 Time Zones and Daylight Saving Time	59
	14.13	General Information about Timecode	60
		14.13.1 Description of IRIG Timecodes	60
		14.13.2 Timecode Format According to IRIG Standard	62
		14.13.3 Timecode Format According to AFNOR Standard	63
15	RoHS	5 Conformity	64
16	Decla	aration of Conformity for Operation in the European Union	65
17	Decla	eration of Conformity for Operation in the United Kingdom	66

1 Imprint and Legal Information

Publisher

Meinberg Funkuhren GmbH & Co. KG

Registered Place of Business:

Lange Wand 9 31812 Bad Pyrmont Germany

Telephone:

+49 (0) 52 81 - 93 09 - 0

Fax:

+49 (0) 52 81 - 93 09 - 230

The company is registered in the "A" Register of Companies & Traders (Handelsregister A) maintained by the Local Court of Hanover (Amtsgericht Hannover) under the number:

17HRA 100322

Executive Management: Heiko Gerstung

Andre Hartmann Natalie Meinberg Daniel Boldt

Website:
☐ https://www.meinbergglobal.com

Email:
☐ info@meinberg.de

Document Publication Information

Manual Version: 1.1

Revision Date: June 16, 2025

PDF Export Date: June 16, 2025

2 Change Log

Version	Date	Revision Notes		
1.0	2023-09-07	Initial Version		
1.1	2025-06-16	New standardized link system		
		New imprint/legal information (→ Chapter 1)		
Corrected error in max. length of H2010 Ultraflex cable with GNS reference		Corrected error in max. length of H2010 Ultraflex cable with GNS reference		
clock (→ Chapter 8.4)		clock (→ Chapter 8.4)		
Overhaul of initialization process (→ Chapter 12)		Overhaul of initialization process (→ Chapter 12)		
Overhaul of GPS receiver information (→ Chapter 14.4)		Overhaul of GPS receiver information (→ Chapter 14.4)		
Overhaul of GNS receiver information (→ Chapter 14.5)		Overhaul of GNS receiver information (→ Chapter 14.5)		
		Overhaul of timecode output information (→ Chapter 14.6)		
Overhaul of GPSANTv2 specifications (→ Chapter 14.8)		Overhaul of GPSANTv2 specifications (→ Chapter 14.8)		
		Overhaul of Multi-GNSS Antenna specifications (→ Chapter 14.9)		
		Added Declarations of Conformity (→ Chapter 16 and → Chapter 17) Other		
		minor corrections		

3 Copyright and Liability Exclusion

Except where otherwise stated, the contents of this document, including text and images of all types and translations thereof, are the intellectual property and copyright of Meinberg Funkuhren GmbH & Co. KG ("Meinberg" in the following) and are subject to German copyright law. All reproduction, dissemination, modification, or exploitation is prohibited unless express consent to this effect is provided in writing by Meinberg. The provisions of copyright law apply accordingly.

Any third-party content in this document has been included in accordance with the rights and with the consent of its copyright owners.

A non-exclusive license is granted to redistribute this document (for example, on a website offering free-of-charge access to an archive of product manuals), provided that the document is only distributed in its entirety, that it is not modified in any way, that no fee is demanded for access to it, and that this notice is left in its complete and unchanged form.

At the time of writing of this document, reasonable effort was made to carefully review links to third-party websites to ensure that they were compliant with the laws of the Federal Republic of Germany and relevant to the subject matter of the document. Meinberg accepts no liability for the content of websites not created or maintained by Meinberg, and does not warrant that the content of such external websites is suitable or correct for any given purpose.

While Meinberg makes every effort to ensure that this document is complete, suitable for purpose, and free of material errors or omissions, and periodically reviews its library of manuals to reflect developments and changing standards, Meinberg does not warrant that this specific document is up-to-date, comprehensive, or free of errors. Updated manuals are provided at thtps://www.meinbergglobal.com and thtps://www.meinberg.support.

You may also write to <u>techsupport@meinberg.de</u> to request an updated version at any time or provide feedback on errors or suggested improvements, which we are grateful to receive.

Meinberg reserves the right to make changes of any type to this document at any time as is necessary for the purpose of improving its products and services and ensuring compliance with applicable standards, laws & regulations.

4 Presentation Conventions in this Manual

4.1 Conventions for the Presentation of Critical Safety Warnings

Warnings are indicated with the following warning boxes, using the following signal words, colors, and symbols:

Caution!

This signal word indicates a hazard with a **low risk level**. Such a notice refers to a procedure or other action that may result in **minor injury** if not observed or if improperly performed.

Warning!

This signal word indicates a hazard with a **medium risk level**. Such a notice refers to a procedure or other action that may result in **serious injury** or even **death** if not observed or if improperly performed.

Danger!

This signal word indicates a hazard with a **high risk level**. Such a notice refers to a procedure or other action that will very likely result in **serious injury** or even **death** if not observed or if improperly performed.

4.2 Secondary Symbols Used in Safety Warnings

Some warning boxes may feature a secondary symbol that emphasizes the defining nature of a hazard or risk.

The presence of an "electrical hazard" symbol is indicative of a risk of electric shock or lightning strike.

The presence of a "fall hazard" symbol is indicative of a risk of falling when performing work at height.

This "laser hazard" symbol is indicative of a risk relating to laser radiation.

4.3 Conventions for the Presentation of Other Important Information

Beyond the above safety-related warning boxes, the following warning and information boxes are also used to indicate risks of product damage, data loss, and information security breaches, and also to provide general information for the sake of clarity, convenience, and optimum operation:

Important!

Warnings of risks of product damage, data loss, and also information security risks are indicated with this type of warning box.

Information:

Additional information that may be relevant for improving efficiency or avoiding confusion or misunder-standings is provided in this form.

4.4 Generally Applicable Symbols

The following symbols and pictograms are also used in a broader context in this manual and on the product.

The presence of the "ESD" symbol is indicative of a risk of product damage caused by electrostatic discharge.

Direct Current (DC) (symbol definition IEC 60417-5031)

Alternating Current (AC) (symbol definition IEC 60417-5032)

Grounding Terminal (symbol definition IEC 60417-5017)

Protective Earth Connection (symbol definition IEC 60417-5019)

Disconnect All Power Connectors (symbol definition IEC 60417-6172)

5 Important Safety Information

The safety information provided in this chapter as well as specific safety warnings provided at relevant points in this manual must be observed during every installation, set-up, and operation procedure of the device, as well as its removal from service.

Any safety information affixed to the product itself must also be observed.

Any failure to observe this safety information, these safety warnings, and other safety-critical operating instructions in the product documentation, or any other improper usage of the product may result in unpredictable behavior from the product, and may result in injury or death.

Depending on your specific device configuration and installed options, some safety information may not be applicable to your device.

Meinberg accepts no responsibility for injury or death arising from a failure to observe the safety information, warnings, and safety-critical instructions provided in the product documentation.

It is the responsibility of the operator to ensure that the product is safely and properly used.

Should you require additional assistance or advice on safety-related matters for your product, Meinberg's Technical Support team will be happy to assist you at any time. Simply send a mail to **techsupport@meinberg.de**.

5.1 Appropriate Usage

The device must only be used appropriately in accordance with the specifications of the product documentation! Appropriate usage is defined exclusively by this manual as well as any other relevant documentation provided directly by Meinberg.

Appropriate usage includes in particular compliance with specified limits! The device's operating parameters must never exceed or fall below these limits!

5.2 Product Documentation

The information in this manual is intended for readers with an appropriate degree of safety awareness.

The following are deemed to possess such an appropriate degree of safety awareness:

- skilled personnel with a familiarity with relevant national safety standards and regulations,
- instructed personnel having received suitable instruction from skilled personnel on relevant national safety standards and regulations.

Read the product manual carefully and completely before you set the product up for use.

If any of the safety information in the product documentation is unclear for you, do **not** continue with the set-up or operation of the device!

Safety standards and regulations change on a regular basis and Meinberg updates the corresponding safety information and warnings to reflect these changes. It is therefore recommended to regularly visit the Meinberg website at thtps://www.meinbergglobal.com or the Meinberg Customer Portal at thtps://meinberg.support to download up-to-date manuals.

Please keep all product documentation, including this manual, in a safe place in a digital or printed format to ensure that it is always easily accessible.

Meinberg's Technical Support team is also always available at **□** techsupport@meinberg.de if you require additional assistance or advice on safety aspects of your Meinberg product.

5.3 Safety During Installation

This rack-mounted device has been designed and tested in accordance with the requirements of the standard IEC 62368-1 (*Audio/Video, Information and Communication Technology Equipment—Part 1: Safety Requirements*). Where the rack-mounted device is to be installed in a larger unit (such as an electrical enclosure), additional requirements in the IEC 62368-1 standard may apply that must be observed and complied with. General requirements regarding the safety of electrical equipment (such as IEC, VDE, DIN, ANSI) and applicable national standards must be observed in particular.

The device has been developed for use in industrial or commercial environments and may only be used in such environments. In environments at risk of high environmental conductivity ("high pollution degree" according to IEC 60664-1), additional measures such as installation of the device in an air-conditioned electrical enclosure may be necessary.

If the appliance has been brought into the usage area from a cold environment, condensation may develop; in this case, wait until the appliance has adjusted to the temperature and is completely dry before setting it up.

When unpacking & setting up the equipment, and before operating it, be sure to read the information on installing the hardware and the specifications of the device. These include in particular dimensions, electrical characteristics, and necessary environmental conditions.

Fire safety standards must be upheld with the device in its installed state—never block or obstruct ventilation openings and/or the intakes or openings of active cooling solutions.

The device with the highest mass should be installed at the lowest position in the rack in order to position the center of gravity of the rack as a whole as low as possible and minimize the risk of the rack tipping over. Further devices should be installed from the bottom, working your way up.

The device must be protected against mechanical & physical stresses such as vibration or shock.

Never drill holes into the device to mount it! If you are experiencing difficulties with rack installation, contact Meinberg's Technical Support team for assistance!

Inspect the device housing before installation. The device housing must be free of any damage when it is installed.

5.4 Electrical Safety

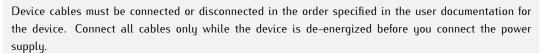
This Meinberg product is operated at a hazardous voltage.

This system may only be set up and connected by skilled personnel, or by instructed personnel who have received appropriate technical & safety training from skilled personnel.

Custom cables may only be assembled by a qualified electrician.

Never work on cables carrying a live current!

Never use cables or connectors that are visibly damaged or known to be defective! Faulty, defective, or improperly connected shielding, connectors, or cables present a risk of injury or death due to electric shock and may also constitute a fire hazard!


Before operating the device, check that all cables are in good order. Ensure in particular that the cables are undamaged (for example, kinks), that they are not wound too tightly around corners, and that no objects are placed on the cables.

Cables must be laid in such a way that they do not present a tripping hazard.

The power supply should be connected using a short, low-inductance cable. Avoid the use of power strips or extension cables if possible. If the use of such a device is unavoidable, ensure that it is expressly rated for the rated currents of all connected devices.

Never connect or disconnect power, data, or signal cables during a thunderstorm! Doing so presents a risk of injury or death, as cables and connectors may conduct very high voltages in the event of a lightning strike!

Always pull cable connectors out at both ends before performing work on connectors! Improperly connecting or disconnecting this Meinberg system may result in electric shock, possibly resulting in injury or death!

When pulling out a connector, never pull on the cable itself! Pulling on the cable may cause the plug to become detached from the connector or cause damage to the connector itself. This presents a risk of direct contact with energized components.

Ensure that all plug connections are secure.

Before the device is connected to the power supply, the device housing must be grounded by connecting a grounding cable to the grounding terminal of the device.

When installing the device in an electrical enclosure, it must be ensured that adequate clearance is provided, minimum creepage distances to adjacent conductors are maintained, and that there is no risk

of short circuits. Protect the device from the ingress of objects or liquids!

If the device malfunctions or requires servicing (for example, due to damage to the housing, power supply cable, or the ingress of liquids or objects), the power supply may be cut off. In this case, the device must be isolated immediately and physically from all power supplies! The following procedure must be followed in order to correctly and reliably isolate the device:

- Pull the power supply plug out of the power source, then disconnect the cable from the device.
- Contact the person responsible for your electrical infrastructure.
- If your device is connected to one or more uninterruptible power supplies (UPS), the direct power supply connection between the device and the UPS solution must be first be disconnected.

5.4.1 Special Information for Devices with AC Power Supply

This device is a Protection Class 1 device and may only be connected to a grounded outlet (TN system).

For safe operation, the installation must be protected by a fuse rated for currents not exceeding 20 A and equipped with a residual-current circuit breaker in accordance with applicable national standards.

The appliance must only ever be disconnected from the mains power supply via the mains socket and not from the appliance itself.

Make sure that the power connector on the appliance or the mains socket is readily accessible for the user so that the mains cable can be pulled out of the socket in an emergency.

Non-compliant cabling or improperly grounded sockets are an electrical hazard!

Only connect the appliance to a grounded shockproof outlet using a safety-tested mains cable designed for use in the country of operation.

5.4.2 Special Information for Devices with DC Power Supply

In accordance with IEC 62368-1, it must be possible to disconnect the appliance from the supply voltage from a point other than the appliance itself (e.q., from the primary circuit breaker).

The power supply plug may only be fitted or dismantled while the appliance is isolated from the power supply (e.g., disconnected via the primary circuit breaker).

Power supply cables must have adequate fuse protection and have an adequate wire gauge size $(1 \text{ mm}^2 - 2.5 \text{ mm}^2 / 17 \text{ AWG} - 13 \text{ AWG})$.

The power supply of the device must have a suitable on-demand disconnection mechanism (i.e., a switch). This disconnection mechanism must be readily accessible in the vicinity of the appliance and marked accordingly as a disconnection mechanism for the appliance.

5.5 Safety when Handling SFP Modules

The fiber-optic SFP modules recommended by Meinberg are equipped with a Class 1 laser.

- Only use fiber-optic SFP modules that are compliant with the definition of a Class 1 laser in accordance with IEC standard 60825-1. Fiber-optic products that are not compliant with this standard may emit radiation capable of causing eye injuries.
- Never look into an unconnected connector of a fiber-optic cable or an unconnected SFP port.
- Unused fiber-optic connectors should always be fitted with a suitable protective cap.
- The safety information and manufacturer specifications relating to the SFP modules used must be heeded.
- The SFP module used must be capable of providing protection against voltage spikes in accordance with IEC 62368-1.
- The SFP module used must be tested and certified in accordance with applicable standards.

The STT module used must be tested and certained in decordance with

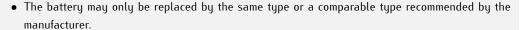
5.6 Safety when Maintaining and Cleaning the Device

Only use a soft, dry cloth to clean the device.

Never use liquids such as detergents or solvents to clean the device! The ingress of liquids into the device housing may cause short circuits in the electronic circuitry, which in turn can cause a fire or electric shock!

Neither the device nor its individual components may be opened. The device or its components may only be repaired by the manufacturer or by authorized personnel. Improperly performed repairs can put the user at significant risk!

In particular, **never** open a power supply unit or module, as hazardous voltages may be present within the power supply device even after it is isolated from the upstream voltage. If a power supply unit or module is no longer functional (for example due to a defect), it can be returned to Meinberg for repair.


Some components of the device may become very hot during operation. Do not touch these surfaces!

If maintenance work is to be performed on the device and the device housing is still hot, switch off the device beforehand and allow it to cool.

5.7 Battery Safety

The integrated CR2032 lithium battery has a service life of at least ten years.

Should it be necessary to replace the battery, please note the following:

- The battery may only be replaced by the manufacturer or authorized personnel.
- The battery must not be exposed to air pressure levels outside of the limits specified by the manufacturer.

Improper handling of the battery may result in the battery exploding or in leakages of flammable or corrosive liquids or gases.

- Never short-circuit the battery!
- Never attempt to recharge the battery!
- Never throw the battery in a fire or dispose of it in an oven!
- Never dispose of the battery in a mechanical shredder!

6 Important Product Information

6.1 CE Marking

This product bears the CE mark as is required to introduce the product into the EU Single Market.

The use of this mark is a declaration that the product is compliant with all requirements of the EU directives effective and applicable as at the time of manufacture of the product.

These directives are listed in the EU Declaration of Conformity, appended to this manual as \rightarrow Chapter 16.

6.2 UKCA Marking

This product bears the British UKCA mark as is required to introduce the product into the United Kingdom (excluding Northern Ireland, where the CE marking remains valid).

The use of this mark is a declaration that the product is in conformity with all requirements of the UK statutory instruments applicable and effective as at the time of manufacture of the product.

These statutory instruments are listed in the UK Declaration of Conformity, appended to this manual as \rightarrow Chapter 17.

6.3 Ensuring the Optimum Operation of Your Device

- Ensure that ventilation slots are not obscured or blocked by dust, or else heat may build up inside the device. While the system is designed to shut down safely and automatically in the event of temperature limits being exceeded, the risk of malfunctions and product damage following overheating cannot be entirely eliminated.
- The device is only deemed to be appropriately used and EMC limits (electromagnetic compatibility) are
 only deemed to be complied with while the device housing is fully assembled in order to ensure that
 requirements pertaining to cooling, fire safety, electrical shielding and (electro)magnetic shielding are
 upheld.

6.4 Maintenance and Modifications

Important!

Before performing any maintenance work on or authorized modification to your Meinberg system, we recommend making a backup of any stored configuration data (e.g., to a USB flash drive from the Web Interface).

6.4.1 Replacing the Battery

Your device's clock module is fitted with a lithium battery (type CR2032) that is used to locally storage almanac data and sustain operation of the real-time clock (RTC) in the reference clock.

This battery has a life of at least ten years. However, if the device exhibits the following unexpected behaviors, the voltage of the battery may have dropped below 3 V, and the battery will need to be replaced:

- The reference clock has the wrong date or wrong time when the system is started.
- The reference clock repeatedly starts in Cold Boot mode (i.e., upon starting, the system has no ephemeris data saved whatsoever, resulting in the synchronization process taking a very long time due to the need to rediscover all of the visible satellites).
- Some configuration options relating to the reference clock are lost every time the system is restarted.

In this case, you should not replace the battery on your own. Please contact the Meinberg Technical Support team, who will provide you with precise guidance on how to perform the replacement.

6.5 Disposal

Disposal of Packaging Materials

The packaging materials that we use are fully recyclable:

Material	Use for	Disposal
Polystyrene	Packaging frame/filling material	Recycling Depot
PE-LD (Low-density polyethylene)	Accessories packaging, bubble wrap	Recycling Depot
Cardboard	Shipping packaging, accessories packaging	Paper Recycling

For information on the proper disposal of packaging materials in your specific country, please inquire with your local waste disposal company or authority.

Disposal of the Device

This product falls under the labeling obligations of the Waste Electrical and Electronic Equipment Directive 2012/19/EU ("WEEE Directive") and thus bears this WEEE symbol. The presence of this symbol indicates that this electronic product may only be disposed of in accordance with the following provisions.

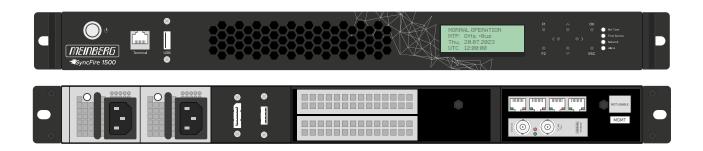
Important!

Do not dispose of the product or batteries via the household waste. Inquire with your local waste disposal company or authority on how to best dispose of the product or battery if necessary.

This product is considered to be a "B2B" product for the purposes of the WEEE Directive and is also classified as "IT and Telecommunications Equipment" in accordance with Annex I of the Directive.

It can be returned to Meinberg for disposal. Any transportation expenses for returning this product (at end-of-life) must be covered by the end user, while Meinberg will bear the costs for the waste disposal itself. If you wish for Meinberg to handle disposal for you, please get in touch with us. Otherwise, please use the return and collection systems provided within your country to ensure that your device is disposed of in a compliant fashion to protect the environment and conserve valuable resources.

Disposal of Batteries


Please consult your local waste disposal regulations for information on the correct disposal of batteries as hazardous waste.

7 Introduction to the SyncFire 1500

Ultra-High-Performance NTP Time Server

The SyncFire 1500 offers top-of-the-line NTP server performance with no compromises. Constructed to order with an integrated GPS, multi-GNSS ("GNS") receiver specially engineered for optimum synchronization performance, the SyncFire 1500 is designed for large-scale environments which rely on a large number of NTP clients having a single common time reference.

Meinberg's custom Linux-based LANTIME Operating System (LTOS), a slim & secure operating system developed specially for the needs of a time server, powers the SyncFire 1500 under the hood, providing access to all the security, network, and monitoring features that you could ever need from an enterprise-grade synchronization appliance.

The powerful Web UI enables you to quickly and easily configure and monitor your SyncFire 1500, while the CLI provides power users with unparalleled flexibility and efficiency. The comprehensive LTOS REST API provides a complete toolset for your network orchestration and automation needs, and SNMP support allows you to integrate your Meinberg systems into your existing network management system.

Product Features:

- An ultra-high-end Stratum 1 NTP server designed for deployment in large-scale environments
- Capable of processing up to hundreds of thousands of NTP requests per second
- 1U chassis, specially constructed for installation in a 19" rack
- Available with a selection of sync input cards for GPS-only synchronization, multi-GNSS synchronization, or PTP slave support for synchronization with a PTP master

7.1 Why Use a Network Time Server?

Any situation where accurate time within a local network plays an essential role in ensuring smooth operation calls for the deployment of a dedicated time server. Technically speaking, it is of course possible to synchronize any PC in a network using time servers provided over the internet, but the following arguments illustrate why a dedicated time server in your own local network is recommended.

- A Meinberg time server allows a network administrator to be notified by email or SNMP trap in the event
 of problems.
- With a dedicated time server, PCs in a local network are not dependent on a functioning internet connection. They are also not dependent on the availability of an external time server, which may fail regardless of the availability of internet access. Even state-run scientific institutions for whom time accuracy and availability is paramount cannot guarantee that a public NTP server will operate flawlessly with 100% availability—the German PTB (Physikalisch-Technisches Bundesanstalt), which provides not only the DCF77 long-wave timing service but also a number of public NTP servers, explicitly warns on its website that 100% availability cannot be guaranteed, despite best efforts. The U.S. Naval Observatory (USNO) provides NTP servers in a similar fashion and has repeatedly had to deal with 'malicious' clients that compromise the availability of the service. Prof. David L. Mills, known as the 'inventor' of NTP, has collaborated with the USNO and has discussed this situation in the NTP newsgroup.
- A test of other public time servers (not those of the otherwise impeachable PTB or USNO!) found that many were distributing time that was significantly off-base despite claiming to be Stratum 1. The problems here are usually due to the administrators responsible for these servers.
- With an internet connection working under 'normal' conditions, NTP generally does a good job of calculating the path delays of network packets and compensating for them. However, if unanticipated factors result in the path between client and server (or even just parts of it) being pushed to the limit, heavy fluctuations in the packet transmission times can disrupt time synchronization significantly. The causes of such transmission route overloads might include widespread hacker activities (which may or may not even be directed at your own network), or novel viruses spreading in a flood of emails.
- A dedicated local time server cannot be easily compromised via the internet. One example that caused significant uproar among the NTP community was the case of a manufacturer of low-cost routers that had hard-coded the IP address of a publicly available NTP server to obtain the time, and had also implemented this very poorly. As a result, the NTP server was bombarded with a massive number of queries, incurring significant expense for the operator of the NTP server. In this case, not even shutting down the NTP server helped, as the queries were still being sent.

8 Installing Your GNSS Antennas

The following chapters explain how to select a suitable location for your GNSS antenna, how to fit the antenna, and how to implement effective anti-surge protection for your antenna installation.

8.1 Selecting the Antenna Location

There are essentially two ways the GPSANTv2 or Multi-GNSS Antenna can be installed using the accessories included:

In either case, the location must be selected to ensure that the view of the sky is not obstructed in any direction (see Fig .1) in order to ensure that enough satellites can be received.

To ensure that your antenna has the best 360° view possible, Meinberg recommends mounting the antenna on a roof on a suitable metal pole (see Fig. 1, antenna illustration on right). If this is not possible, the antenna may be mounted on the wall of a building, but must be high enough above the edge of the roof (see Fig. 1, antenna illustration on left).

This prevents the line of sight between the antenna and the satellites from being partially or fully obstructed and limits the impact of GNSS signal reflections from other surfaces such as house walls.

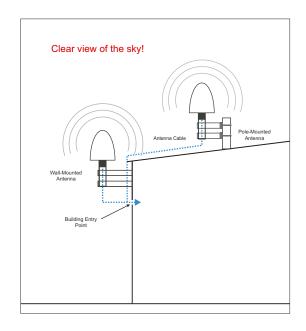


Fig. 1: Ideal Positioning

If there is a solid obstacle (a building or part of a building) in the line of sight between the antenna and each of the satellites (see Fig. 2), it is likely that the satellite signals will be partially or fully obstructed or reflected signals will cause interference, causing problems with signal reception.

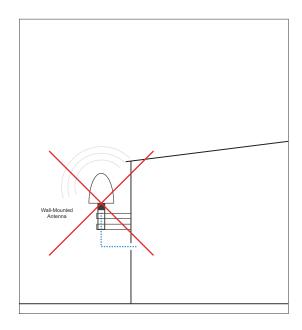


Fig. 2: Poor positioning of a wall-mounted antenna

There must also be no conductive objects, overhead power lines, or other electrical lighting or power circuits within the signal cone of the antenna (approx. 98 degrees for a Meinberg GPSANTv2 antenna or approx. 120 degrees for a Multi-GNSS antenna), as these can cause interference in the already weak signals transmitted in the frequency band of the satellites.

Other Installation Criteria for Optimum Operation:

- Vertical installation of antenna (see Fig. 1)
- At least 50 cm (1.5 ft) distance to other antennas
- A clear view towards the equator
- A clear view between the 55th north and 55th south parallels (satellite orbits).

Information:

Problems may arise with the synchronization of your Meinberg system if these conditions are not met, as four satellites must be located to calculate the exact position.

8.2 Installation of the GPSANTv2 Antenna

Please read the following safety information carefully before installing the antenna and ensure that it is observed during the installation.

Danger!

Do not mount the antenna without an effective fall arrester!

Danger of death from falling!

- Ensure that you work safely when installing antennas!
- Never work at height without a suitable and effective fall arrester!

Danger!

Do not work on the antenna installation during thunderstorms!

Danger of death from electric shock!

- <u>Do not</u> carry out any work on the antenna installation or the antenna cable if there is a risk of lightning strike.
- <u>Do not</u> perform any work on the antenna installation if it is not possible to maintain the prescribed safety distance to exposed power lines or electrical substations.

Mount the GPSANTv2 (as shown in Fig. 3) at a distance of at least 50 cm to other antennas using the mounting kit provided, either onto a vertical pole of no more than 60 mm diameter or directly onto a wall.

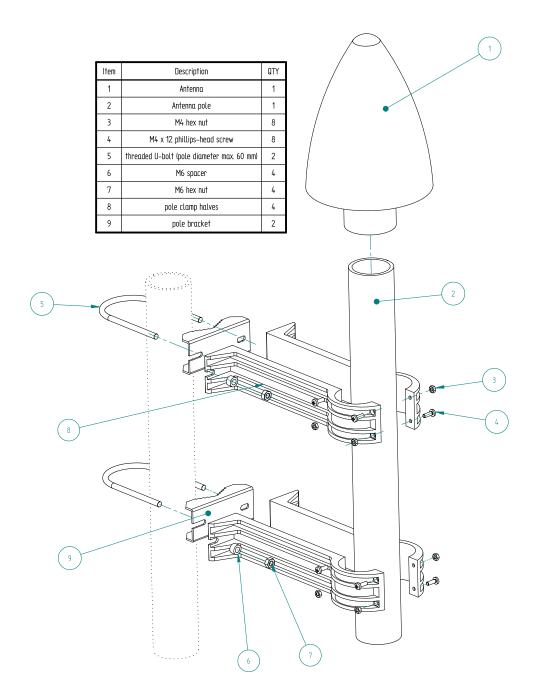


Fig. 3: Mounting a GPSANTv2 antenna onto a pole

Fig. 3 illustrates the mounting of a GPSANTv2 on a pole by way of example. When mounting the antenna on a wall, the four wall plugs and M6x45 screws should be used to mount the two halves of the pole clamp (Fig. 3, Pos. 9) using the provided screw slits.

8.3 Installation of the Multi-GNSS Antenna

Please read the following safety information carefully before installing the antenna and ensure that it is observed during the installation.

Danger!

Do not mount the antenna without an effective fall arrester!

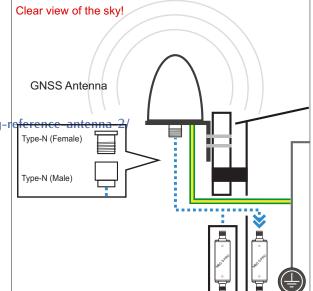
Danger of death from falling!

- Ensure that you work safely when installing antennas!
- Never work at height without a suitable and effective fall arrester!

Danger!

Do not work on the antenna installation during thunderstorms!

Danger of death from electric shock!



- <u>Do not</u> carry out any work on the antenna installation or the antenna cable if there is a risk of lightning strike.
- <u>Do not</u> perform any work on the antenna installation if it is not possible to maintain the prescribed safety distance to exposed power lines or electrical substations.

Mount the Multi-GNSS Antenna at a distance of at least 50 cm to other antennas using the mounting kit provided onto a vertical pole of between 60 mm and 215 mm diameter $(2\frac{1}{2}^{"} - 8\frac{1}{2}^{"})$.

Detailed installation instructions are provided on the manufacturer's product website under the "Downloads" section.

thttps://www.pctel.com/antenna-product/qps-timing-

The next chapter explains how the antenna cable should be laid.

8.4 Antenna Cable

Selecting the Appropriate Cable

Meinberg provides suitable cable types with its antennas and these are ordered together with the antenna to match the length you need from your antenna to your Meinberg reference clock. The route to be covered for your antenna installation should be determined and the appropriate cable type selected accordingly before confirming your order.

The cable is shipped with both ends fitted with the appropriate connectors as standard, although the cable can also be shipped without any pre-fitted connectors if so requested.

GPS Reference Clocks

The table below shows the specifications of the supported cable types for the transmission of the 35~MHz intermediate frequency:

Cable Type	RG58C/U	RG213	H2010 (Ultraflex)
Signal Propagation Time at 35 MHz*	503 ns/100 m	509 ns/100 m	387 ns/100 m
Attenuation at 35 MHz	8.48 dB/100 m	3.46 dB/100 m	2.29 dB/100 m
DC Resistance	5.3 Ω/100 m	1.0 Ω/100 m	1.24 Ω/100 m
Cable Diameter	5 mm	10.3 mm	10.2 mm
Max. Cable Length	300 m	700 m	1100 m

Tab. 1: Specifications of Cable Types Recommended by Meinberg

^{*} The propagation times are specified on the basis of 100 m cable; these values can be used as a reference to calculate the propagation time of any other arbitrary length of cable.

GNS Reference Clocks

The table below shows the specifications of the supported cable types for the transmission of the typical GNSS frequency bands:

Cable Type	H155	H2010 (Ultraflex)
Signal Propagation Time at 1575 MHz*	423 ns/100 m	386 ns/100 m
Attenuation at 1575 MHz	40.20 dB/100 m	17.57 dB/100 m
DC Resistance	3.24 Ω/100 m	1.24 Ω/100 m
Cable Diameter	5.4 mm	10.2 mm
Max. Cable Length	70 m	150 m

Tab. 1: Specifications of Cable Types Recommended by Meinberg

Important!

Please avoid using a mixture of different cable types for your antenna installation. This should be taken into consideration in particular when purchasing additional cable, for example to extend an existing cable installation.

^{*} The propagation times are specified on the basis of 100 m cable; these values can be used as a reference to calculate the propagation time of any other arbitrary length of cable.

Laying the Antenna Cable

When laying the antenna cable, ensure that the specified maximum cable length is not exceeded. This length will depend on the selected cable type and its attenuation factor.

If the specified maximum length is exceeded, correct transmission of the synchronization data and thus proper synchronization of the reference clock can no longer be guaranteed.

Lay the coaxial cable from the antenna to the point of entry into the building. Like any other metallic object in the antenna installation (antenna and pole), the antenna cable must be integrated into the grounding infrastructure of the building and also connected to the other metallic objects.

♠

Caution!

When laying the antenna cable, ensure that sufficient distance is maintained from live cables (such as high-voltage power lines), as these can cause severe interference and compromise the quality of the antenna signal significantly. Surges in power lines (caused, for example, by lightning strike) can generate induced voltages in a nearby antenna cable and damage your system.

Further Points to Consider when Laying Antenna Cable:

- The minimum bend radius of the cable must be observed¹.
- Any kinking, crushing, or other damage to the external insulation must be avoided.
- Any damage or contamination of the coaxial connectors must be avoided.

¹The bend radius is the radius at which a cable can be bent without sustaining damage (including kinks).

Compensating for Signal Propagation Time

The propagation of the signal from the antenna to the receiver (reference clock) can incur a certain delay. This delay can be compensated for in the LANTIME Web Interface.

To do this, log into the Web Interface of your SyncFire 1500 system and proceed as follows:

- 1. Open the tab "Clock" \rightarrow "State & Configuration".
- 2. Select the corresponding clock module.
- 3. Click on the "Miscellaneous" tab.
- 4. Select the compensation method and enter the appropriate value.

If you are using standard RG58, RG213, or Belden H155 cable, the length of the cable can be simply entered in meters by selecting "By Length". This will provide a reliable, automatically calculated offset based on the known specifications of standard RG58, RG213, or Belden H155 cable.

Alternatively, a fixed offset can be entered in nanoseconds by selecting "By Delay". This may be necessary if you are using a different type of coaxial cable (in which case, the delay is calculated based on the data provided in the data sheet of your cable) and/or you wish to apply an offset based on your own delay measurements.

Fig. 4.1: "Clock" tab in the LANTIME OS Web Interface when using a GPS receiver

8.5 Surge Protection and Grounding

The greatest risk to an antenna installation and the electronic devices connected to it is exposure to lightning strikes. An indirect lightning strike in the vicinity of the antenna or coaxial cable can induce significant surge voltages in the coaxial cable. This induced surge voltage can then be passed to the antenna and to the building interior, which can damage or even destroy both your antenna and your Meinberg system.

This is why antennas and antenna cables must always be integrated into a building's equipotential bonding infrastructure (Fig. 5, Item 5) as part of an effective lightning protection strategy to ensure that voltages induced by lightning strikes directly on or indirectly near the antenna are redirected safely to ground.

Warning!

Surge protection and lightning protection systems may only be installed by persons with suitable electrical installation expertise.

Surge Protection

VDE 0185-305 (IEC 62305) (relating to buildings with lightning protection systems) and VDE 0855-1 (IEC 60728-11) (addressing bonding strategies and the grounding of antenna installations in buildings with no external lightning protection system) are the lightning protection standards applicable to antenna installations on a building. Antennas must generally be integrated into a building's lightning protection system or bonding infrastructure.

If the antenna represents the highest point of a building or pole, the lightning protection strategy should incorporate a safety zone (safe angle α , Fig. 5 and 6), for example formed by a lightning rod positioned above the antenna. This increases the likelihood of lightning being 'caught' by the lightning rod, allowing surge currents to be safely passed from the lightning rod along a grounding conductor to ground.

The pole itself is connected to the bonding infrastructure. Any metallic objects in the antenna installation, such as the pole and antenna, or the shelding of the antenna cable, must be connected together.

Meinberg GPSANTv2 Antenna

Meinberg's new-generation "GPSANTv2" antenna features integrated surge protection in accordance with IEC 61000-4-5 Level 4 to reliably shield the antenna against surge voltages.

However, in order to preserve the safety of the building and to protect your Meinberg system, Meinberg recomends the use of the MBG S-PRO surge protector, which is addressed in more detail later in this chapter.

The drawings below illustrate how a GPSANTv2 can be installed in accordance with the above conditions on a pole (e.g. antenna pole) or building roof.

Antenna Installation without Insulated Lightning Rod System

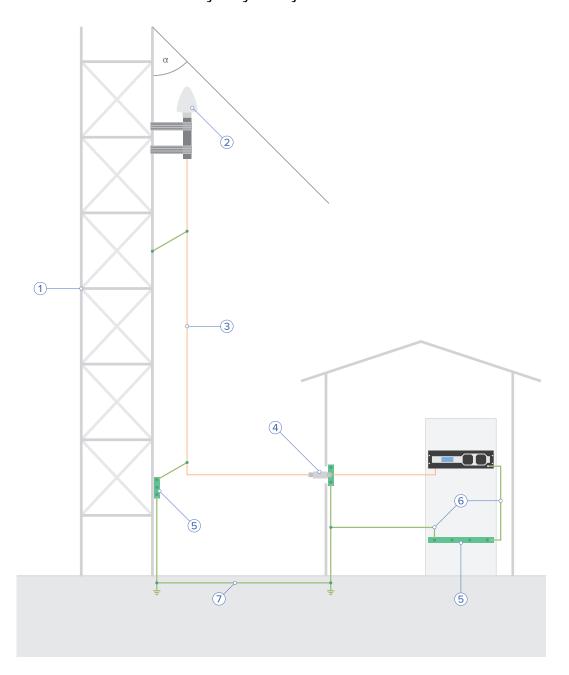


Fig. 5: Installation on a Pole

- 1 Antenna Pole
- 2 GPSANTv2 Antenna
- 3 Antenna Cable
- 4 MBG S-PRO Surge Protector
- 5 Bonding Conductor
- 6 Bonding Bar
- 7 Foundation Electrode
- α Safety Zone

Antenna Installation with Insulated Lightning Rod System

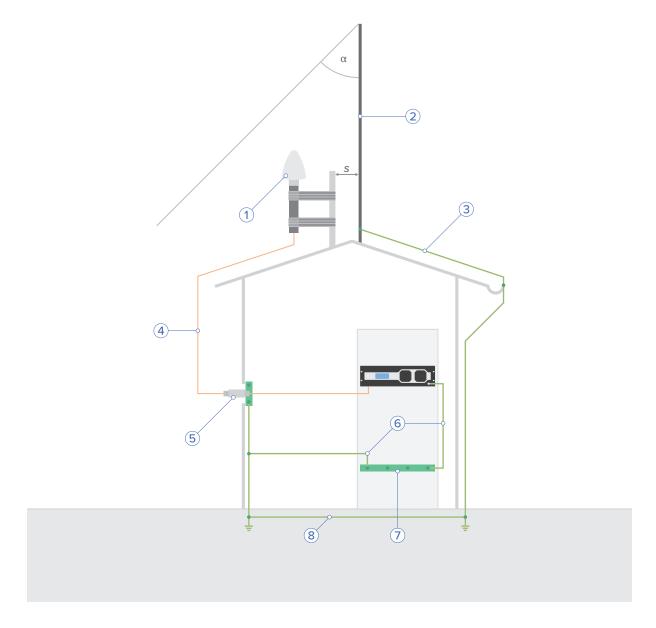


Fig. 6: Roof Installation

- 1 GPSANTv2 Antenna
- 2 Lightning Rod
- 3 Lightning Rod Conductor
- 4 Antenna Cable
- 5 MBG S-PRO Surge Protector
- 6 Bonding Conductor
- 7 Bonding Bar
- 8 Foundation Electrode
- α . Safety Zone
- s. Safe Distance (between lightning rod and antenna installation)

MBG S-PRO Surge Protector

Information:

The surge protector and suitable coaxial cable are not included as standard with the GPSANTv2, but can be ordered as an optional accessory.

Construction

The MBG S-PRO is a surge protector (Phoenix CN-UB-280DC-BB) for coaxial connections. It is patched directly into the antenna line and consists of a replaceable gas discharge tube that redirects the energy from the cable shielding to the ground potential when ignited.

Installation Conditions

To protect the building from possible surge voltages, the MBG S-PRO is installed at the point of entry of the antenna cable into the building. The MBG S-PRO must be shielded against water spray and water jets, either by means of a suitable enclosure (IP65) or a protected location.

Ideal Installation Conditions:

- Installation at the point where the antenna cable passes through the building wall
- Ground conductor cable from surge protector to bonding bar kept as short as possible

Installation and Connection

This surge protector has no dedicated input or output polarity and therefore has no preferred installation orientation. It features Type-N female connectors at both ends.

Installation

1.

Fit the surge protector to the supplied mounting bracket as shown in the illustration.

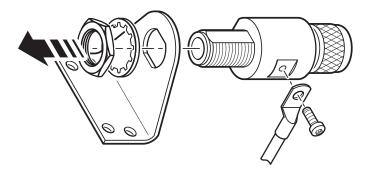


Fig. 7: Installation of the Surge Protector

2.

Connect the MBG S-PRO to a bonding bar using a ground conductor cable that is as short as possible. It is also important for the grounding conductor of the surge protector to be connected to the same bonding bar as the connected Meinberg system to prevent destructive potential differences.

3.

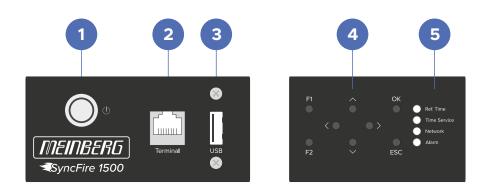
Connect the coaxial cable from the antenna to one of the surge protector connectors, then connect the other surge protector connector to the coaxial cable leading to the Meinberg reference clock.

Caution!

For safety reasons, the antenna cable must not exceed a certain length if there are no other devices such as a power distributor between the surge protector and the downstream electronic device with integrated surge protection at the mains connector level.

Please refer to the document \rightarrow "Technical Specifications: MBG S-PRO Surge Protector" in the appendix, as well as the manufacturer's data sheet, for detailed installation instructions and technical specifications for the surge protector.

Data Sheet (Download):


 $\begin{tabular}{ll} \square'' https://www.meinbergglobal.com/download/docs/shortinfo/german/cn-ub-280dc-bb_pc.pdf \end{tabular}$

9 SyncFire 1500 Indicators and Function Keys on the Front Panel

LCD Panel

- 4 x 20 character backlit display for clarity even in low-light conditions.
- Status display (as shown above) indicates the status of the reference clock, the current date and time of the clock, and the current offset of the NTP server.
- Provides status readouts and allows basic configuration processes to be performed using the front-panel function keys.
- Shows alarms and alerts requiring user intervention.

Function Keys and Connectors on the Front Panel

1. Power On/Off Button

Allows the system to be shut down and started as necessary via ACPI*.

2. Terminal Interface

The serial console port is a standard RS-232 interface with an 8P8C ("RJ45-like") female connector that can be used to establish a direct serial connection (38400 baud, 8N1 framing) between the SyncFire 1500 and any device running suitable terminal software (e.g., a laptop) for direct command-line access. The connection can be established using any suitable RS-232 cable or adapter (e.g., RJ45 to D-Sub 9, Yost wiring standard).

^{*} The Advanced Configuration and Power Interface (ACPI) is an open industry standard for power management in desktop computers, notebooks, and servers. The interface provides hardware discovery, device configuration, and power management functionality.

3. USB Interface

This USB 3.0 interface can be used for:

- connecting an input device (e.g., keyboard)
- saving a backup of the LTOS configuration to an external storage medium (such as a USB flash drive) and restoring this backup (or copying a standard configuration between multiple LANTIME servers)
- creating a backup of logfiles (such as SyncMon logs)
- loading and saving cryptographic certificates
- creating a physical USB "security key" that can be used to enable and disable the local function keys on the device

4. Function Keys

"F1", "F2", "OK", "ESC", and arrow keys allow for local navigation of configuration menus and status readouts to enable many configuration processes to be performed directly from the device during installation.

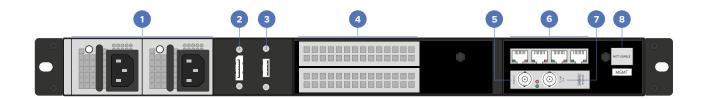
5. Status LEDs

Ref. Time

Indicates whether the reference clock is providing a valid timebase.

Time Service

Specifies whether the internal NTP service of the server is synchronized with the reference clock.


Network

Shows whether there is a valid link-up on the network interface.

- <u>Alarm</u>

Advises of a general system fault that requires attention.

10 SyncFire 1500 Rear Connectors

1. Redundant Power Supplies

Connector Type: IEC 60320 C14 Male for C13 Female

Voltage Range: 100–240 V AC (50–60 Hz),

Max. Power Output: 400 W

Nominal Current Input: 6.3 A (240 V AC)

2. Video Out

Connector Type: DisplayPort 1.2

Resolution: 1920 x 1080

3. USB Interface

This USB 3.0 interface can be used for:

- connecting an input device (e. g., keyboard)
- saving a backup of the LTOS configuration to an external storage medium (such as a USB flash drive) and restoring this backup (or copying a standard configuration between multiple LANTIME servers)
- creating a backup of logfiles (such as SyncMon logs)
- loading and saving cryptographic certificates
- creating a physical USB "security key" that can be used to enable and disable the local function keys on the device

4. Expansion Card Spaces

Space for two officially supported expansion cards (PCI Express) for expanding network connectivity.

1 Gbit Network: 4-port RJ45 Gigabit Ethernet card
10 Gbit Network: 2-port SFP+ 1/10 Gbit/s Ethernet card
25 Gbit Network: 2-port SFP28 1/10/25 Gbit/s Ethernet card
40 Gbit Network: 2-port QSFP+ 10/40 Gbit/s Ethernet card

5. Sync Input Connector

GPS Sync Input

Connector Type: BNC, Female or Type-N, Female

Termination: 50 Ω

Cable Type: RG58 (max. 300 m) or RG213 (max. 700 m)

Supply Voltage: 15 V

GNS Sync Input

Connector Type: SMA, Female

Termination: 50 Ω

Cable Type: Belden H155 (max. 70 m), H2010 Ultraflex (max. 150 m)

Supply Voltage: 5 V

PTP Sync Input

Connector Type: SFP Module (Transceiver); refer to chapter

→ Chapter 14.7, "Oregano syn1588 PCle NIC" for further information

6. Network Card

Interfaces: 4x 1000BASE-T (Gigabit Ethernet) RJ45

Network Protocols: IPv4 (with DHCP support), IPv6 (with DHCPv6 and Autoconf support)

Network Services: HTTP(S) for Web Interface and REST API access

FTP for access to log files and uploading firmware updates

Telnet and SSH for command line access

SNMP for monitoring

Other Networking

Features:

Full Parallel Redundancy Protocol (PRP) support as Doubly Attached Node

Support for network link aggregation ("bonding") with multiple modes for load

balancing or link redundancy.

7. Timecode Output (GNSS reference receivers only)

Output Signal: IRIG AM sine-wave signal via BNC female connector (see → Chapter 14.6, "AM Timecode Outp

8. BMC Interface

The BMC (Baseboard Management Controller) interface is **not** intended for end-user access and, as a security precaution, has been disabled both at a hardware level and via the BIOS of the server platform.

11 Booting the System for the First Time

When the system is switched on, the following message will be displayed; the row of periods in the lower line indicate the progress:

Once the boot process is complete, the main status display will be shown, indicating the operating mode of the receiver, the current offset of the NTP server, the current date, and the current UTC time:

If the GPS receiver does not synchronize ("**Ref. Clock**" LED is still red after 25 minutes), a review of the number of satellites in view and the good satellites is recommended; to do this press \downarrow , \rightarrow , \rightarrow , \downarrow , \downarrow , \downarrow and then **OK** from the main screen:

```
SV CONSTELLATION
SVs in view: 11
Good SVs : 10
Sel:00 00 00 00
```

It is necessary to have simultaneous reception from four satellites so that the receiver can determine its relative spatial position. If the antenna is not properly installed (e.g., it must have a clear view of the sky), it may experience difficulties with performing geolocation.

The SyncFire 1500 is shipped with DHCP enabled out of the box. However, if you wish to manually configure your IP address from the device itself, press F2 to view the current configuration, then F2 again to open the setup page.

Then press the **OK** button three times to open the IPv4 LANO configuration page, where you can modify the IP address, netmask, and default gateway.

Note: This procedure relates to the first Ethernet connection (*lan0:0*).

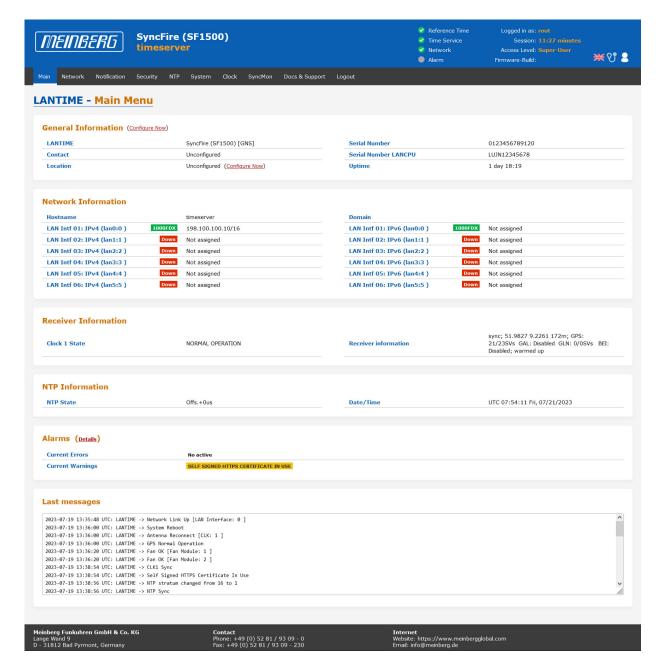
Once a network connection is established, all subsequent configuration can be performed over the network, either via the Web Interface or an SSH session:

Default User: root

Default Password: timeserver

12 Initialization Process of the GPS Receiver

Once the antenna and power supply have been connected, the system is ready for operation. After around two minutes of the system being switched on, the oscillator will have warmed up and thus achieved the base precision required to receive satellite signals. If valid almanac and ephemeridal data are present in the reference clock's battery-backed memory and the receiver's position has not changed since it was last on, the system's CPU will be able to calculate which satellites should currently be receivable. In this case, only a single satellite needs to be received to enable the clock to synchronize.


If the location of the receiver has changed by several hundred miles since the last time the system was on, the elevation and Doppler shift of the satellites will not match the calculated values.

This will cause the system to switch to "Warm Boot" mode, in which it will systematically search for satellites to receive from. The receiver can use the valid almanac data to detect the identification numbers of existing satellites. If four satellites can be received, the receiver's new position can be determined and the device will switch to "Normal Operation" mode.

If there is no available almanac data (e.g., because the battery-backed memory has been wiped or corrupted), the GPS reference clock will launch in "Cold Boot" mode, in which the receiver searches for a satellite and reads the entire almanac. It generally takes between 13 and 24 minutes to complete this process; the full almanac is transmitted over a period of 12.5 minutes, and the receiver may need to wait for the next transmission to begin.

Once the full almanac has been acquired, the system will switch to "Warm Boot" mode, in which it uses the newly-acquired almanac data to scan for other satellites.

13 Configuration and Monitoring via the Web Interface

Meinberg's SyncFire 1500 is shipped with LTOS v7.08 or higher. Please refer to the most recent edition of the LTOS Configuration & Management manual at http://www.mbg.link/docg-fw-ltos for a detailed description of the Web Interface and the use of the front panel display.

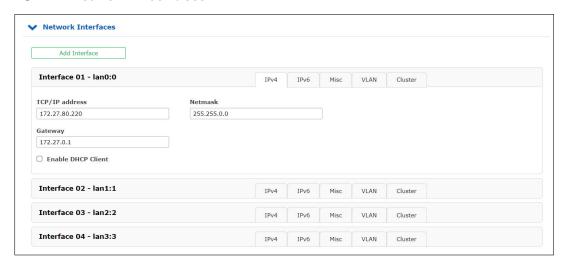
The chapter "Security User Guide" in the LTOS manual is recommended reading to ensure that your SyncFire system is configured securely within your network. Troubleshooting information is also provided in the chapters "Troubleshooting and Alert Messages" and "Support Information".

All relevant documents can also be downloaded from the LTOS Web Interface under "Documents & Support", or from the Meinberg Customer Portal at https://meinberg.support after entering your product's serial number.

The following tabs are available on a SyncFire 1500:

- Menu
- Network
- Notification
- Security
- NTP
- System
- Clock
- SyncMon
- Docs & Support

Detailed information on the various tabs of the Web Interface can be found in the LTOS manual.


13.1 Initial Configuration via the Web Interface

The Web Interface of the SyncFire 1500 is complex and your system can be configured in a multitude of ways. The manual for your SyncFire 1500's LTOS version provides detailed guidance in this regard.

However, to get your system operational on a basic level after start-up, the following basic configuration processes must be completed:

- Virtual network interfaces
- Time zone
- Antenna cable length or the delay offset to account for signal propagation time

13.1.1 Network Interfaces

This section is used to manage the virtual interfaces of the SyncFire 1500. Each available physical port can have up to 99 virtual interfaces assigned to it. The name of each virtual interface consists of the sequential number of the associated physical interface followed by the number of the virtual interface (also sequential, beginning with zero).

The example above shows a configuration where the physical interface LANO is associated with a virtual interface, in this case the default *lan0:0*.

Add Interface

This button is used to create a new virtual interface. A new virtual interface is assigned to the physical port LANO by default and is only assigned to the desired physical port at the end of the configuration process. This assignment can be modified using the appropriate option under the "Misc." tab.

IPv4 Tab:

The options in this tab can be used to configure the IPv4 parameters or the adjust the current configuration of the DHCP server.

TCP/IP Address: IPv4 address of the selected interface.

Netmask: Subnet mask configuration for the selected interface.

Gateway: Specifies an interface-specific gateway for the selected interface. This should

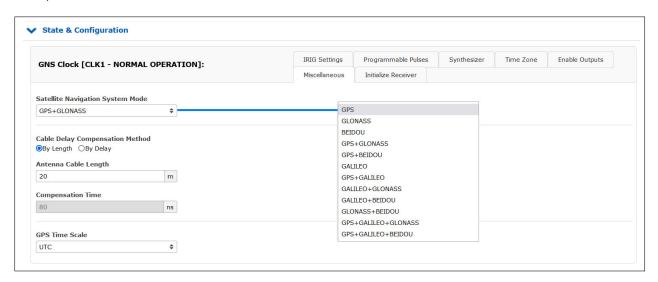
only be configured if the IP address of the interface is not in the same subnet as

the default gateway and the interface needs to communicate with other

(sub)networks via this gateway.

Enable DHCP Client: If set, the network configuration will be acquired automatically by broadcasting a

DHCP request.


13.1.2 Clock: Time Zone

This tab is used to configure the time zones (UTC offset) for the signals output by the reference clock (IRIG, serial time string, programmable pulses).

13.1.3 Clock: Miscellaneous

This tab is used to configure other operating parameters of the reference clock that do not fall under the other tabs. The only relevant options here are the antenna cable propagation delay and, when using a Type *GNS* receiver, the choice of one or more satellite constellations. Please refer to the LTOS Manual for further information.

Satellite Navigation System Mode

When using a Type *GNS* receiver, the satellite constellations that the receiver should accept signals from are selected here. It is possible to allow signals from up to three different satellite constellations simultaneously (see illustration above).

Antenna Cable Length / Propagation Delay Offset

A signal passing along a coaxial cable from an antenna takes around 4 to 5 nanoseconds to pass through a meter of cable. Therefore, if your SyncFire 1500 is connected via a coaxial cable of 300 m in length, this will result in a delay of $1.5 \mu s$.

If the option "By Length" is selected and the length of the antenna cable (or the combined length of all individual antenna cables separated by passive splitters) is entered in meters, the SyncFire 1500 will automatically calculate the applicable offset. Alternatively, the offset can also be entered manually by selecting the option "By Delay" and entering the manually calculated delay in nanoseconds.

Information:

A maximum cable length of 2,000 m or a maximum manual offset of 10,000 ns can be entered here.

14 Technical Appendix

14.1 Technical Specifications: SyncFire 1500

Chassis Specifications

Form Factor: 1U / 19" rack-mounted, 84 HP

Dimensions: $439 \text{ mm } \times 42 \text{ mm } \times 602 \text{ mm } [\text{W} \times \text{H} \times \text{D}]$

(17.28 in x 1.54 in x 23.7 in)

Total Weight 12.3 kg / 27.1 lb (as rack-mounted; including receiver,

additional network card, and rack mounting kit)

Material: Sheet steel

IP Rating: IP20

Operating Specifications

Supported Operating Temp. $0 \, ^{\circ}\text{C}$ to $45 \, ^{\circ}\text{C}$ (32 $^{\circ}\text{F}$ to $113 \, ^{\circ}\text{F}$)

Supported Storage Temp. $-40 \,^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$ ($-40 \,^{\circ}\text{F}$ to 158 $^{\circ}\text{F}$)

Supported Relative Humidity

(Operation) Max. 90 % at 40 °C, non-condensing

Supported Relative Humidity

(Storage) Max. 95 % at 50 $^{\circ}$ C, non-condensing

Supported Altitude: Max. 5000 m / 16400 ft (above sea level)

Basic System Specifications

Server Platform: Intel® M10JNP Server Mainboard

Prozcssor: Intel® Xeon E2276G Quad-Core CPU

(4.90 GHz, 6 cores, 12 threads, 12 MB cache, 80 W TDP)

Operating System: Custom LANTIME Operating System (LTOS) based on Linux 4.x LTS kernel

RAM: 16 GB DDR4 3200 MT/s ECC

Internal Storage: SSD hard disk, 120 GB

Management Features

Network: Web Interface (HTTP/HTTPS TLS v1.3)

SSH v2: Command line interface

Telnet: Command line interface

REST API: (HTTP/HTTPS TLS v1.3)

Serial Console: 8P8C ("RJ45-like") Connector for serial console terminal access

Local: Front panel display and function keys

Monitoring & Alerts

Supported Protocols: SNMP v1, SNMP v2, SNMP v3

Notification

Channels: Email (SMTP), syslog

Log Access: The log files can be displayed or downloaded via the Web Interface, and

can also be accessed via the FTP service or command line

interface.

NTP Support

NTP Protocols NTP v2 (RFC 1119), NTP v3 (RFC 1305),

NTP v4 (RFC 5905), SNTP v3 (RFC 1769), SNTP v4 (RFC 2030)

Security Features Symmetric key-based authentication using MD5, SHA-1,

or AES-128-CMAC hashes

NTP v4 Autokey (private/public key pairs) NTS encryption (RFC 8915) for NTP v4

Oscillator Options

SyncFire 1500 systems fitted with a GPS or GNS receiver are shipped as standard with a "TCXO" (temperature-controlled crystal oscillator), which provides excellent holdover performance if your server loses synchronization with its upstream reference for any reason. The SyncFire 1500 may also be shipped on request with a more powerful holdover solution; the options available and their performance metrics are listed below:

Туре	Holdover Performance (1 Day)*	Holdover Performance (1 Year)*	
TCXO	+- 4.3 ms	+- 16 s	
OCXO LQ	$+$ - 865 μ s	+- 6.3 s	
OCXO SQ	+- 220 μs	+- 4.7 s	
OCXO MQ	$+$ - 65 μ s	+- 1.6 s	
OCXO HQ	+- 22 μs	+- 788 ms	

^{*} Full holdover performance requires the system to have been synchronized for 24 hours previously.

Sync Input Options

GPS Sync Input**: 12-channel L1 C/A code input for reception of synchronization signals from the

GPS satellites

GNS Sync Input***: 72-channel input for reception of synchronization signals from the GPS

(L1 C/A code), Galileo (E1 B/C), BeiDou (B1I), and GLONASS (L1OF) satellites

PTP Sync Input: PTP input for operation of the SyncFire 1500 as a PTP slave based on Oregano

Systems' syn1588 PCI Express PTP technology

Support & Compliance

Technical Support: Free lifetime support via telephone and email, including

firmware updates

Warranty: Three-year warranty, extendable upon request

Firmware Updates: Firmware is field-upgradable; updates can be installed from a connected USB

storage medium, via the Web Interface (upload via a web browser), or via the

CLI (download from a server).

LTOS allows you to install multiple firmware versions onto the device concurrently and select which one should be used via the Web Interface.

^{**} Requires a Meinberg GPS antenna (included with the system as standard)

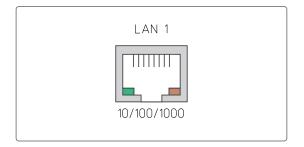
^{***} Requires an L1 Multi GNSS antenna (included with the system as standard)

14.2 10/100/1000BASE-T (Gigabit) Network Interface

Ethernet Standard: 1000BASE-T

Data Transmission

10/100/1000 Mbit/s


Rate:

Connector Type: 8P8C (RJ45)

(on device)

Cable Type: RJ45 (Copper, Twisted Pair)

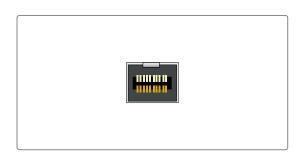
Duplex Modes: Half/Full/Autonegotiation

14.3 10 Gigabit SFP+

Transceiver

Interface: SFP+

Bus Interface: PCI Express v1.1, x8


Network: 10 Gigabit Ethernet

Power Consumption: Dual Port 10GBase-SR,

Typically 10 W, max. 10.7 W $\,$

Dual Port SFP+ Twinax Typically 7.9 W, max. 8.6 W

Operating Temperature: $0 - 55 \, ^{\circ}\text{C} \, (32 - 131 \, ^{\circ}\text{F})$

14.3.1 SFP Transceivers

Tested and Recommended Third-Party Transceivers

Connector Type	Mode	Manufacturer/Type	Connection Length
10 Gbit/s	Multi-Mode	E10GSFPLR (Intel 1/10G)	400 m (with OM4 fiber)
25 Gbit/s	Single-Mode	E25GSFP28LRX (Intel E25G)	10 km
40 Gbit/s	Multi-Mode	FlexOptix (Q.1640G.03)	150 m

Warning!

Prevention of Eye Injuries

- Fiber-optic SFP modules that are not compliant with the definition of a Class 1 laser in accordance with IEC standard 60825-1 may emit radiation capable of causing eye injuries.
- Never look into an unconnected connector of a fiber-optic cable or an unconnected SFP port, and ensure that unused fiber-optic connectors are always fitted with a suitable protective cap.

GNSS | IF | 15 V

14.4 Antenna Input: GPS Receiver

Danger!

Do not work on the antenna installation during thunderstorms!

Danger of death from electric shock!

- Do not carry out any work on the antenna installation or the antenna cable if there is a risk of lightning strike.
- Do not perform any work on the antenna installation if it is not possible to maintain the prescribed safety distance from exposed power lines or electrical substations.

BNC, Female **Connector Type:**

(on device)

Receiver Type: 12-Channel GPS Receiver

Signal Support: GPS: L1 C/A (1575.42 MHz)

Mixing Frequency:

10 MHz ¹ (Reference Clock to Antenna)

Intermediate Frequency:

35.4 MHz ¹ (Antenna to Reference Clock)

1) These frequencies are transferred

via the antenna cable

Voltage Draw of Antenna:

15 V (via antenna cable)

Power Consumption

of Antenna:

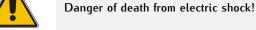
100 mA (via antenna cable)

Cable Type: Coaxial Cable, Shielded

Cable Length: Max. 300 m (RG58)

Max. 700 m (RG213)

Max. 1100 m (H2010 Ultraflex)


14.5 Antenna Input: GNS Receiver

Danger!

Do not work on the antenna installation during thunderstorms!

• Do not carry out any work on the antenna installation or the antenna cable if there is a risk of lightning strike.

• Do not carry out any work on the antenna installation if it is not possible to maintain the prescribed safe distance to exposed lines and electrical substations.

Multi-GNSS L1 Antenna with Antenna Type:

integrated Lightning Protection

Receiver Type: 72-Channel Receiver

GPS/GLONASS/Galileo/BeiDou

GPS: Signal Support: L1 C/A (1575.42 MHz)

> Galileo: E1-B/C (1575.42 MHz)

BeiDou: B1I (1561.098 MHz)

GLONASS: L10F (1602 MHz +

k*562.5 kHz)

where k represents the channel number (-7 – 6)

within the corresponding GLONASS

frequency band

Signal Gain: 40 dB

Antenna Gain: \geq 3.5 dBic / \geq 3 dBic

Rated Impedance: 50Ω

Output Voltage: 5 V DC (used to power antenna)

Output Current: max. 120 mA

SMA, Female **Connector Type:**

(on device)

Coaxial Cable, Shielded Cable Type:

Cable Length: max. 70 m with Belden H155 Coaxial Cable

max. 150 m with H2010 Ultraflex Coaxial Cable

GNSS | L1 | 5 V ---

14.6 AM Timecode Output

Connector Type: BNC, Female

(on device)

Output Signal: AM Timecode

(Amplitude-Modulated Sine-Wave

Signal)

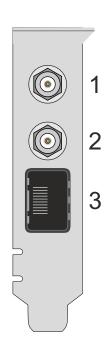

Signal Level: 3 V_{pp} / 1 V_{pp} (MARK/SPACE)

(50 Ω load)

Carrier Frequency: 1 kHz (IRIG-B)

Cable Type: Coaxial Cable, Shielded

(For detailed information about timecode, please refer to → Chapter 14.13, "General Information about Timecode")


14.7 Oregano syn1588 PCIe NIC

The syn1588® PCIe NIC is a standard 100/1000 Mbit PCI Express Ethernet network interface card with enhancements to provide highly accurate clock synchronization via the IEEE 1588 standard.

The syn1588® PCIe NIC provides all real-time functions required for an IEEE 1588 node to operate in slave mode.

Key Features

- 100/1000 Mbit Ethernet network interface card (PCI Express card, half height)
- IEEE 1588-2002, IEEE 1588-2008 and IEEE 1588-2019 compliant
- Slave-capable PTP node (with syn1588® PTP stack)
- IEEE 1588 hardware timestamping
- Patented on-the-fly timestamping technology (one-step mode)
- Clock accuracy up to +-4 ns
- syn1588® PTP Stack binary runtime license included
- Up to 4 programmable I/O signals available on SMA jacks

Connectors


- 1 Periodic Output
- 2 1PPS Output
- 3 SFP, 1000BASE-X

Supported SFP Modules

Туре	Mode	Connector Type	Max. Connection Length
Avago FBR-5710PZ	Fiber-Optic (1000BASE-X)	Duplex LC	550 m
Avago AFCT-5710PZ	Fiber-Optic (1000BASE-X)	Duplex LC	10,000 m
Fiberstore SFP1G-SX-85	Fiber-Optic (1000BASE-X)	Duplex LC	550 m
Fiberstore SFP1G-LX-31	Fiber-Optic (1000BASE-X)	Duplex LC	10,000 m
Finisar FTLF1318	Fiber-Optic (1000BASE-X)	Duplex LC	10,000 m
Fiberland FLD-SG-MMD-1	Fiber-Optic (1000BASE-X)	Duplex LC	550 m
Fiberland FLD-SG-SMD-10	Fiber-Optic (1000BASE-X)	Duplex LC	10,000 m
Fiberland FLD-SASG-T	Copper (1000BASE-T)	RJ45	100 m

14.8 Technical Specifications: GPSANTv2 Antenna

Physical Dimensions

Electrical Specifications

Power Supply: $15 \text{ V} \pm 3 \text{ V}$

(via Antenna Cable)

Nominal Current Draw: Approx. 100 mA at 15 V, max. 115 mA

(via Antenna Cable)

Signal Reception & Processing

Reception Frequency: 1575.42 MHz (GPS L1/Galileo E1 Band)

Axial Ratio: \leq 3 dB at zenith

Element Gain: Typically 5.0 dBic at zenith

Mixing Frequency: 10 MHz

Intermediate Frequency: 35.4 MHz

Out-of-Band Rejection: \geq 70 dB @ 1555 MHz

 \geq 55 dB @ 1595 MHz

Conversion Gain: 59 dB \pm 3 dB

Antenna Input to IF Output

Noise Figure: Typically 1.8 dB, maximum 3 dB at +25 °C

Input Filter Survival Capacity: Exposure to > 13 dBm for 24 h without destruction

Conversion Delay: Typically 152 ns \pm 5 ns

(Patch Connector to IF Output)

Group Delay Ripple within 2.4 MHz

System Bandwidth:

Max. 15 ns

Polarization: Right-Hand Circular Polarization

ETSI-Compliant Frequency

Blocking:

Blocked frequency range further extended to 6 GHz

-40 dBm

P1dB Input:

Antenna Pattern: Vertical 3 dB Angle Width: 100° centered around azimuth

Connection

Connector Type: Type-N, Female

Nominal Impedance: 50 Ω

Voltage Standing Wave Ratio

(VSWR):

 $\leq 1.5:1$

Grounding: M8 threaded bolt and hexagon nut for use with

corresponding ring lug

Specifications for Interference Immunity

Surge Protection: Level 4 (per IEC 61000-4-5)

Test Voltage: 4000 V

Max. Peak Current @ 2 Ω: 2000 A

ESD Protection: Level 4 (per IEC 61000-4-2)

Contact Discharge: 8 kV Air Discharge: 15 kV

Mechanical and Environmental Specifications

Housing Material: ABS Plastic Case for Outdoor Installation

Specified Environment: Outdoor Environments

IP Rating: IP65

Temperature Range (Operation): $-60 \,^{\circ}\text{C}$ to $+80 \,^{\circ}\text{C}$ ($-76 \,^{\circ}\text{C}$ to $+176 \,^{\circ}\text{F}$)

Temperature Range (Storage): $-20 \,^{\circ}\text{C}$ to $+70 \,^{\circ}\text{C}$ ($-4 \,^{\circ}\text{C}$ to $+158 \,^{\circ}\text{F}$)

Relative Humidity (Operation): 5 % to 95 % (non-condensing)

Weight: 1.4 kg (3.09 lbs), including mounting kit

14.9 Technical Specifications: 40 dB Multi-GNSS Antenna for Fixed-Location Applications

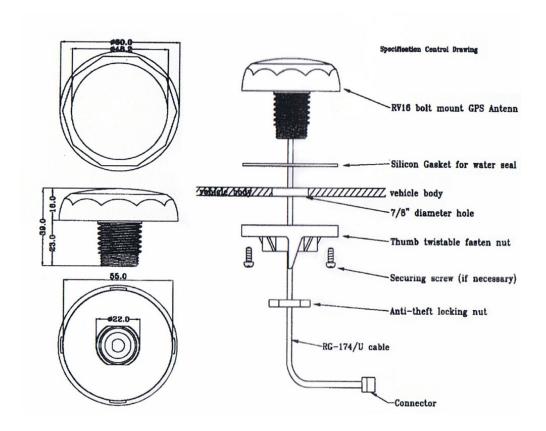
The SyncFire 1500 is typically shipped with an active 40 dB Multi-GNSS Antenna manufactured by PCTEL.

Detailed specifications and installation instructions for the PCTEL 40 dB Multi-GNSS Antenna are provided in the third-party manufacturer's data sheet under the following links:

Data Sheet:

 \square https://www.meinberqqlobal.com/download/docs/datasheets/english/ds_gps-gln-l1-antenna.pdf

Manual:


For any updated information about the product, please also visit the product website of the manufacturer PCTEL at:

thttps://www.pctel.com/antenna-product/gps-timing-reference-antenna-2/

14.10 Technical Specifications: 27 dB Mobile Multi-GNSS Antenna for Mobile Applications

The SyncFire 1500 is typically shipped with an active 40 dB Multi-GNSS Antenna manufactured by PCTEL.

Installation Diagram

Detailed specifications are provided in the manufacturer's data sheet. The data sheet for the SANAV RV-76G Mobile Multi-GNSS Antenna can be downloaded via the following link:

thttps://www.meinbergglobal.com/download/docs/other/rv-76g_en.pdf

14.11 Technical Specifications: MBG S-PRO Surge Protector

The MBG S-PRO is a surge protector manufactured by Phoenix Contact (Type Designation CN-UB-280DC-BB) and designed to protect coaxial connections. It is patched directly into the antenna line and consists of a replaceable gas discharge tube that redirects the energy from the cable shielding to the ground potential when ignited. Connect the MBG S-PRO using a ground conductor cable that is as short as possible.

The MBG S-PRO has no dedicated input/output polarity and no preferred installation orientation.

Phoenix CN-UB-280DC-BB

Features:

- Excellent RF Performance
- Multiple Strike Capability
- 20 kA Surge Protection
- Bidirectional Protection

Contents of Package: Surge Protector with Mounting Bracket and Accessories

Product Type: Surge Protector for Transmission and Receiver Devices

Construction Type: In-Line Breaker

Connector Types: Type-N, Female/Type-N, Female

The original product page of the supplier (see link) of the CN-UB-280DC-BB surge protector provides detailed specifications, as well as a variety of product-specific documents under the link below:

Data Sheet (Download):

thttps://www.meinbergglobal.com/download/docs/shortinfo/english/cn-ub-280dc-bb_pc.pdf

14.12 How Satellite Navigation Works

The use of a receiver for location tracking and time synchronization relies on the ability to measure the satellite-to-receiver propagation delay as precisely as possible. It is necessary to have simultaneous reception from at least four satellites so that the receiver can determine its relative spatial position in three dimensions (x, y, z) and measure the deviation of its clock against the system clock. Monitoring stations around the planet track the orbital trajectory of the satellites and detect deviations between the local atomic clocks and the system time. The collected data is transmitted up to the satellites, which then send navigation data back to Earth.

The high-precision trajectory data of each satellite, known as the satellite's ephemeris, is needed by the receiver to continuously calculate the precise location of the satellites in space. A roughly defined ephemeridal schedule based on empirical data, referred to as an almanac, is used by a receiver to identify which satellites are visible above the horizon given a known approximate location and time. Each satellite transmits its own ephemeridal schedule as well as the almanacs of all existing satellites.

Satellite Systems

GPS was installed by the United States Department of Defense (US DoD) and operates at two performance levels: the Standard Positioning Service, or SPS, and the Precise Positioning Service, or PPS. The structure of the messages transmitted by the SPS has been openly published and reception is provided for public use. The timing and navigation data of the more precise PPS is encrypted and is thus only accessible to certain (usually military) users.

GLONASS was originally developed by the Russian military for real-time navigation and ballistic missile guidance systems. GLONASS satellites also send two types of signal: a Standard Precision Signal (SP) and an encrypted High Precision Signal (HP).

BeiDou is a Chinese satellite navigation system. The second-generation system, officially referred to as the BeiDou Navigation Satellite System (BDS) and also known as "COMPASS", consists of 35 satellites. BeiDou entered service in December 2011 with ten satellites and was made available to users in the Asia-Pacific region. The system was completed in June 2020 with the launch of the final satellite.

Galileo is an in-development global European satellite navigation and time reference system controlled by a civilian authority (European Union Agency for the Space Programme, EUSPA). Its purpose is the worldwide delivery of high-precision navigation data and is similarly structured to the American GPS, Russian GLONASS and Chinese BeiDou systems. The main differences in the systems lie in their approaches to frequency usage & modulation and the satellite constellation.

14.12.1 Time Zones and Daylight Saving Time

GPS System Time is a linear timescale that was synchronized with the international UTC timescale (Coordinated Universal Time) when the satellite system became operational in 1980. Since it has entered service, however, several leap seconds have been introduced to the UTC timescale to adjust UTC time to irregularities in the Earth's rotation. While GPS System Time deviates from UTC time by several seconds for this very reason, satellite messages do incorporate the number of seconds by which these timescales deviate from one another, allowing GPS receivers to be synchronized internally with the international UTC timescale.

The receiver's microprocessor can identify any time zone based on UTC time and automatically apply Daylight Saving Time adjustments over several years if so configured by the user.

14.13 General Information about Timecode

The need to transmit encoded time information became a topic of some importance as early as the 1950s. The U.S. space program in particular was a key driver of advancement in this field, using timecode information to correlate different sets of measurements. However, the formats and usage of these signals were defined arbitrarily at the whims of the specific users, which resulted in the development of hundreds of different timecode formats, some of which were standardized by the "Inter Range Instrumentation Group" (IRIG) in the early 1960s. These standardized timecode formats are referred to as "IRIG Timecodes" today.

In addition to these general-purpose time signals, there are other codes in use designed for specific applications, among them NASA36, XR3, or 2137. The SyncFire 1500, however, limits itself to the output of IRIG-A, IRIG-B, AFNOR NF S87-500, and IEEE 1344 formats, as well as IEEE C37.118, the successor to IEEE 1344.

The AFNOR timecode is a variant of the IRIG-B format that uses the available "control functions" segment of the IRIG timecode to supply full date information.

Visit our website for more detailed information about IRIG and other timecodes:

Interpretation IRIG and other timecodes: **IRIG and other

14.13.1 Description of IRIG Timecodes

Each IRIG timecode format is denoted by an alphabetical character followed by a three-digit number sequence as specified in IRIG Standard 200-04. Each character in a timecode format designation has the following meaning:

Character	Bit Rate	A B E G	1000 pps 100 pps 10 pps 10000 pps
1 st Character	Pulse Wave	0	DC level shift (DCLS), pulse-width modulated
		1	Sine-wave carrier, amplitude-modulated
2 nd Character	Carrier Frequency	0	No carrier (DC level shift)
	•	1	100 Hz, time resolution 10 ms
		2	1 kHz, time resolution 1 ms
		3	10 kHz, time resolution 100 μ s
3 rd Character	String Content	0	BCD(rov), CF, SBS
	,	1	BCD _(TOY) , CF
		2	$BCD_{(TOY)}$
		3	BCD _(TOY) , SBS
		4	BCD(TOY), BCD(YEAR), CF, SBS
		5	BCD(TOY), BCD(YEAR), SBS
		6	BCD(TOY), BCD(YEAR)
		7	BCD(TOY), BCD(YEAR), SBS

BCD: Time and day-of-year in BCD format CF: Control Functions (for unspecified use)

SBS: Number of seconds in the day since midnight (binary)

In addition to the original IRIG standards, there are also other specifications issued by other bodies that define specific extensions.

AFNOR: Code according to NF S87-500, 100 pps, AM sine-wave signal,

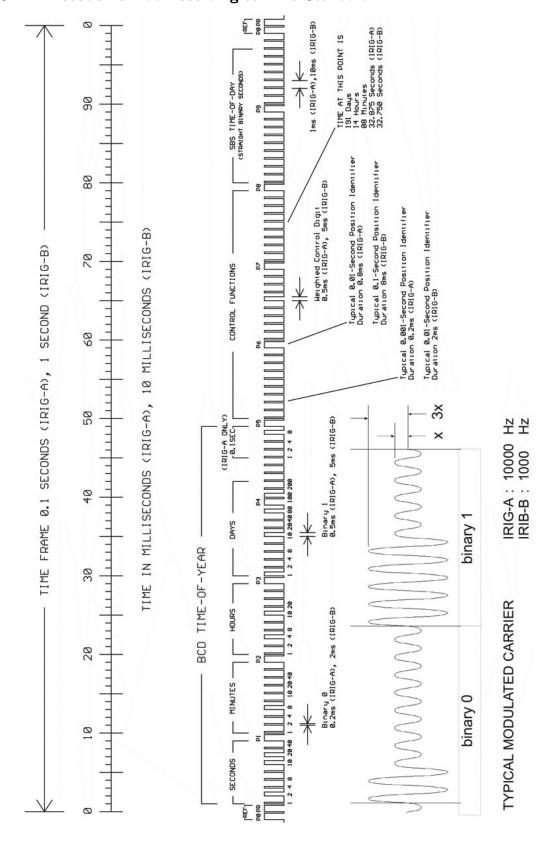
> 1 kHz carrier frequency, BCD time-of-year, complete date, SBS time-of-day, signal level specified by standard.

IEEE 1344: Code according to IEEE 1344-1995, 100 pps, AM sine-wave signal, 1 kHz carrier frequency,

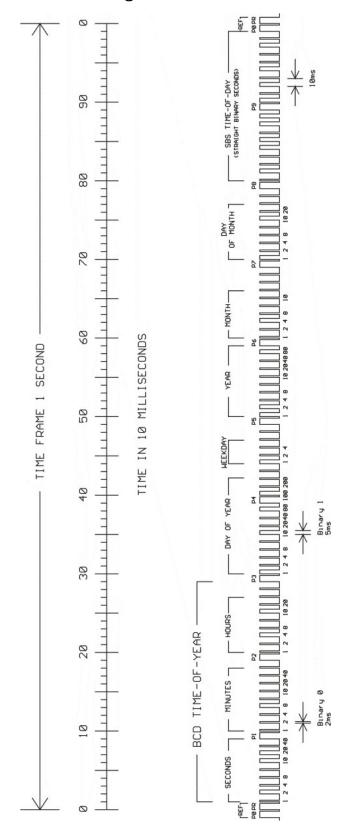
BCD time-of-year, SBS time-of-day, IEEE 1344 extensions for date,

time zone, Daylight Saving Time, and leap seconds in Control Functions (CF) segment.

(See also table "Structure of CF Segment in IEEE 1344 Code")


IEEE C37.118: Identical to IEEE 1344, but with UTC offset +/- sign bit reversed

NASA 36: 100 pps, AM sine-wave signal, 1 kHz carrier frequency,


Time Resolution: 10 ms (DCLS), 1 ms (AM carrier)

BCD time-of-year: 30 bits – seconds, minutes, hours, and days

14.13.2 Timecode Format According to IRIG Standard

14.13.3 Timecode Format According to AFNOR Standard

15 RoHS Conformity

Conformity with EU Directive 2011/65/EU (RoHS)

We hereby declare that this product is compliant with the European Union Directive 2011/65/EU and its delegated directive 2015/863/EU "Restrictions of Hazardous Substances in Electrical and Electronic Equipment" and that no impermissible substances are present in our products pursuant to these Directives.

We warrant that our electrical and electronic products sold in the EU do not contain lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), bis(2-ethylhexyl)phthalat (DEHP), benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), or diisobutyl phthalate (DIBP) above the legal limits.

16 Declaration of Conformity for Operation in the European Union

Konformitätserklärung

Doc ID: SyncFire 1500-August 2, 2023

Hersteller Meinberg Funkuhren GmbH & Co. KG
Manufacturer Lange Wand 9, D-31812 Bad Pyrmont

erklärt in alleiniger Verantwortung, dass das Produkt, declares under its sole responsibility, that the product

Produkt be zeich nung

SyncFire 1500

Product Designation

auf das sich diese Erklärung bezieht, mit den folgenden Normen und Richtlinien übereinstimmt: to which this declaration relates is in conformity with the following standards and provisions of the directives:

RED – Richtlinie RED Directive 2014/53/EU	ETSI EN 303 413 V1.2.1 (2021-04)
EMV – Richtlinie EMC Directive 2014/30/EU	EN 55035:2017/A11:2020 EN 55032:2015 + AC:2016 + A11:2020 + A1:2020 ETSI EN 301 489-19 V2.1.1 (2019-04) EN 61000-3-3:2013 + A1:2019 ETSI EN 301 489-1 V2.2.3 (2019-11) EN 61000-3-2:2019 EN IEC 61000-6-2:2019 EN IEC 61000-6-3:2021
Niederspannungsrichtlinie Low-Voltage Directive 2014/35/EU	EN IEC 62368-1:2020 + A11:2020
RoHS – Richtlinie RoHS Directive 2011/65/EU + 2015/863/EU	EN IEC 63000:2018

Bad Pyrmont, August 2, 2023

Stephan Meinberg Production Manager

17 Declaration of Conformity for Operation in the United Kingdom

UKCA Declaration of Conformity

Doc ID: SyncFire 1500-August 2, 2023

Manufacturer Meinberg Funkuhren GmbH & Co. KG

Lange Wand 9 31812 Bad Pyrmont

Germany

declares that the product

Product Designation SyncFire 1500

to which this declaration relates, is in conformity with the following standards and provisions of the following regulations under British law:

•			
Radio Equipment Regulations 2017 (as amended) SI 2017/1206	ETSI EN 303 413 V1.2.1 (2021-04)		
Electromagnetic Compatibility Regulations 2016 (as amended) SI 2016/1091	EN 55035:2017/A11:2020 EN 55032:2015 + AC:2016 + A11:2020 + A1:2020 ETSI EN 301 489-19 V2.1.1 (2019-04) EN IEC 61000-3-3:2013 + A1:2019 ETSI EN 301 489-1 V2.2.3 (2019-11) EN IEC 61000-3-2:2019 EN IEC 61000-6-3:2021 EN IEC 61000-6-2:2019		
Electrical Equipment (Safety) Regulations 2016 (as amended) SI 2016/1101	EN IEC 62368-1:2020/A11:2020		
The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012 (as amended) SI 2012/3032 as amended by SI 2019/696	EN IEC 63000:2018		

Bad Pyrmont, Germany, dated August 2, 2023

Stephan Meinberg Production Manager