MANUAL

SDU/MP
Signal Distribution Unit

5th March 2020
Meinberg Funkuhren GmbH & Co. KG
ENGLISH
1. Power LED / operating mode (green)
2. Status LEDs: Signal, Alarm

DEUTSCH
1. Power LED / Betriebsanzeige (grün)
2. Status LEDs: Signal, Alarm
1. Power supply connector, power switch
2. TTL outputs, BNC female
3. TTL input, BNC female
4. Error relay output, 3pin. DFK
Table of Contents

1 Imprint 1

2 Important Safety Information 2
 2.1 Important Safety Instructions and Protective Measures 2
 2.2 Used Symbols 3
 2.3 Security during Installation 5
 2.4 Protective Conductor- / Ground-Terminal 8
 2.5 Safety during Operation 8
 2.6 Safety during Maintenance 9
 2.7 Cleaning and Care 9
 2.8 Prevention of ESD Damage 10
 2.9 Return of Electrical and Electronic Equipment 11

3 The Modular System SDU 12

4 Technical Specifications SDU/MP Chassis 13

5 Signal-Distribution Card SDU/TTL 15

6 Time Code Distribution SDU/IRIG 16
 6.1 Abstract of Time Code 17
 6.2 IRIG Standard Format 18

7 Distribution Module SDU/FO 19

8 Technical Datas SDU/MP 20
 8.1 SDU/MP - Input and Output Options 20
 8.2 SDU - Power Supply Options 21
 8.2.1 AC Power Connector 21
 8.2.2 AC/DC - Power Supply 22
 8.2.3 DC Power Connector 23
 8.2.4 HDC Power Supply Connector 24
 8.3 SDU - Signal Input Options 25
 8.3.1 TTL In 25
 8.3.2 Fiber Optic Input 25
 8.3.3 Time Code AM Input 26
 8.4 SDU - Output Signal Options 27
 8.4.1 TTL Output 27
 8.4.2 Fiber Optic Output 27
 8.5 Error Relay 28

9 RoHS and WEEE 29
1 Imprint

Meinberg Funkuhren GmbH & Co. KG
Lange Wand 9, 31812 Bad Pyrmont / Germany

Phone: + 49 (0) 52 81 / 93 09 - 0
Fax: + 49 (0) 52 81 / 93 09 - 230

Internet: https://www.meinbergglobal.com
Mail: info@meinberg.de

Date: 2020-03-05
2 Important Safety Information

2.1 Important Safety Instructions and Protective Measures

The following safety instructions must be respected in all operating and installation phases of the device. Non-observance of safety instructions, or rather special warnings and operating instructions in product manuals, violates safety standards, manufacturer instructions and proper usage of the device. Meinberg Funkuhren shall not be responsible for any damage arising due to non-observance of these regulations.

Depending on your device or the installed options some information is not valid for your device.

If a procedure is marked with the following signal words, you may only continue, if you have understood and fulfilled all requirements. In this documentation dangers and indications are classified and illustrated as follows:

DANGER!
The signal word indicates an imminently hazardous situation with a high risk level. This notice draws attention to an operating procedure or similar proceedings, of which a non-observance may result in serious personal injury or death.

WARNING!
The signal word indicates a hazard with a medium risk gradient. This notice draws attention to an operating procedure, a procedure or the like which, if not followed, can lead to serious injuries, possibly resulting in death.

CAUTION!
The signal word indicates a hazard with a low risk gradient. This notice draws attention to an operating procedure, a procedure or the like which, if not followed, can lead to minor injuries.

ATTENTION!
This notice draws attention to an operating procedure, a procedure or the like which, if not followed, can cause damage to the product or loss of important data.
2.2 Used Symbols

The following symbols and pictograms are used in this manual. To illustrate the source of danger, pictograms are used, which can occur in all hazard classes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung / Description</th>
</tr>
</thead>
</table>
| ⚡ | IEC 60417-5031
 | Gleichstrom / Direct current |
| ⚡ | IEC 60417-5032
 | Wechselstrom / Alternating current |
| ⚡ | IEC 60417-5017
 | Erdungsanschluss / Earth (ground) terminal |
| ⚡ | IEC 60417-5019
 | Schutzleiteranschluss / Protective earth (ground) terminal |
| ⚡ | ISO 7000-0434A
 | Vorsicht / Caution |
| ⚡ | IEC 60417-6042
 | Vorsicht, Risiko eines elektrischen Schlages / Caution, risk of electric shock |
| ⚡ | IEC 60417-5041
 | Vorsicht, heiße Oberfläche / Caution, hot surface |
| ⚡ | IEC 60417-6056
 | Vorsicht, Gefährlich sich bewegende Teile / Caution, moving fan blades |
| ⚡ | IEC 60417-6172
 | Trennen Sie alle Netzstecker / Disconnection, all power plugs |
| ⚡ | IEC 60417-5134
 | Elektrostatisch gefährdete Bauteile / Electrostatic Sensitive Devices |
| ⚡ | IEC 60417-6222
 | Information generell / Information general |
| ⚡ | 2012/19/EU
 | This product is handled as a B2B category product. In order to secure a WEEE compliant waste disposal it has to be returned to the manufacturer. |
The manuals for a product are included in the scope of delivery of the device on a USB stick. The manuals can also be obtained via the Internet. Enter www.meinbergglobal.com into your browser, then enter the corresponding device name in the search field at the top.

This manual contains important safety instructions for the installation and operation of the device. Please read this manual completely before using the unit.

This device may only be used for the purpose described in this manual. In particular, the given limits of the device must be observed. The safety of the installation in which the unit is integrated is the responsibility of the installer!

Non-observance of these instructions can lead to a reduction in the safety of this device!

Please keep this manual in a safe place.

This manual is intended exclusively for electricians or persons trained by an electrician who are familiar with the applicable national standards and safety rules. Installation, commissioning and operation of this device may only be carried out by qualified personnel.
2.3 Security during Installation

WARNING!

Preparing for Commissioning
This built-in unit, has been designed and examined according to the requirements of the standard IEC 60950-1 „Information Technology Equipment - Safety“.

When the built-in unit is used in a terminal (e.g., housing cabinet), additional requirements according to Standard IEC 60950-1 must be observed and complied with. In particular, the general requirements and the safety of electrical equipment (such as IEC, VDE, DIN, ANSI) as well as the applicable national standards are to be observed.

The device has been developed for use in the industrial sector as well as in residential areas and can only be used in such environments. For environments with higher levels of soiling, additional measures, e.g. Installation in an air-conditioned control cabinet required.

Transport, Unpacking, Installation
If the unit is brought into the operating room from a cold environment, condensation may occur, wait until the unit is temperature-controlled and absolutely dry before operating it.

When unpacking, setting up, and before operating the equipment, be sure to read the information on the hardware installation and the specifications of the equipment. These include, for example, dimensions, electrical characteristics, and necessary ambient and climatic conditions, etc.

The fire protection must be ensured in the installed state.

For mounting, the housing must not be damaged. No holes may be drilled in the housing.

For safety reasons, the device with the highest mass should be installed in the lowest position of the rack. Other devices must be placed from the bottom to the top.

The device must be protected against mechanical stress such as vibration or shock.
Connecting Data Cables

During a thunderstorm, data transmission lines must not be connected or disconnected (risk of lightning).

When wiring the devices, the cables must be connected or disconnected in the order of the arrangement described in the user documentation accompanying the device. Always attach all cables to the plug during connection and removal. Never pull the cable itself. Pulling the cable can cause the cables to disconnect from the plug.

Install the cables in way that they do not constitute a hazard (danger of tripping) and are not damaged, i.e. kinked.

Connecting Power Supply

This equipment is operated at a hazardous voltage. Non-observance of the safety instructions in this manual may result in serious personal injury or property damage.

Before connecting to the power supply, a grounding cable must be connected to the earth connection of the device.

Before operation, check that all cables and lines work properly and are undamaged. Pay particular attention to the facts that the cables do not have kinks or that they are not too short around corners, and no objects are placed on the cables. Also make sure that all connections are secure.

Faulty shielding or cabling will endanger your health (electrical shock) and may destroy other equipment.

Ensure that all necessary safety precautions have been taken. Make all connections to a unit before turning on the power. Observe the safety instructions on the device (see safety symbols).

The metal housing of the device is grounded. It must be ensured that enough air and creepage distances to neighboring voltage-carrying parts are provided during assembly in the control cabinet and no short circuits are caused.

In the case of malfunctions or servicing (e.g. in the event of a damaged housing or power cable or when fluids or foreign objects enter), the current flow can be interrupted. Questions about the house installation, need to be clarified with your house administration.

The power supply should be connected with a short, low-inductance line.
AC Power Supply
- The device is a device of protection class 1 and may only be connected to a grounded outlet (TN system).
- For safe operation, the device must be protected by an installation fuse of max. 16 A and equipped with a residual current circuit breaker in accordance with the applicable national standards.
- The unit must always be disconnected from the mains and not from the appliance.
- Devices with mains plugs are equipped with a safety-tested mains cable of the country of use and may only be connected to a grounded shockproof socket, otherwise electric shock may occur.
- Make sure that the mains socket on the appliance or the mains socket of the house installation is freely accessible to the user so that the mains cable can be pulled out of the socket in case of emergency.

DC Power Supply
- Outside the assembly group the device must be disconnectable from the power supply in accordance with the provisions of IEC 60950-1 (e.g. by the primary line protection).
- Installation and disassembly of the power supply plug is only permitted if the assembly group is switched off (e.g. by the primary line protection).
- The supply lines must be adequately secured and dimensioned.

Connection Cross Section:
- 1 mm² – 2.5 mm²
- 17 AWG – 13 AWG

- The device must be supplied with a suitable disconnector (switch). The separation device must be easily accessible, placed near the device and marked as a separation device for the unit.
2.4 Protective Conductor- / Ground-Terminal

ATTENTION!

In order to ensure safe operation and to meet the requirements of IEC 62368-1, the device must be correctly connected to the protective earth conductor via the protective earth connection terminal.

If an external earth connection is provided on the housing, it must be connected to the equipotential bonding rail (grounding rail). The mounting parts (without cable) are not included in the scope of delivery.

Note:
Please use a grounding cable ≥ 1.5 mm2
Always pay attention to a correct crimp connection!

2.5 Safety during Operation

WARNING!

Avoiding Short-Circuits
Make sure not to get any objects or liquids inside the unit. Electric shock or short circuit could result.

Ventilation Slots
Make sure that the ventilation slots are not covered or dusty, as there is a danger of overheating during operation. Disturbances during operation can result.

Normal Operation
The normal operation and the observance of the EMC limits (electromagnetic compatibility) are only ensured if the housing cover is properly installed and when the doors are closed (cooling, fire protection, shielding against electrical, magnetic and electromagnetic fields).

Switch off in fault / service case
By switching off, the devices are not disconnected from the power supply. In the event of a fault or service case, the devices must be immediately disconnected from all power supplies.

Follow the steps below:
- Switch off the device
- Disconnect all power plugs
- Inform the service
- Devices that are connected via one or more uninterruptible power supplies (UPS) remain operational even when the UPS power cord is disconnected. Therefore, you must put the UPS out of operation according to the documentation of the corresponding user documentation.
2.6 Safety during Maintenance

WARNING!

When you are expanding the device, use only device parts that are approved for the system. Non-observance may result in injury to the EMC or safety standards and cause malfunction of the device.

If device parts, which are released for the system, are extended or removed there may be a risk of injury in the area of the hands, due to the pull-out forces (approx. 60 N).

The service informs you which device parts may be installed.

The device must not be opened, repairs to the device may only be carried out by the manufacturer or by authorized personnel. Improper repairs can result in considerable danger to the user (electric shock, fire hazard).

Unauthorized opening of the device or of individual parts of the device can also lead to considerable risks for the user and result in a loss of warranty as well as an exclusion of liability.

- Danger due to moving parts – keep away from moving parts.

- Device parts can become very hot during operation. Do not touch these surfaces! If necessary, switch off the unit before installing or removing any equipment, and allow it to cool down.

2.7 Cleaning and Care

ATTENTION!

Do not wet clean the appliance! Penetrating water can cause considerable dangers to the user (e.g., electric shock).

Liquid can destroy the electronics of the device! Liquid penetrates into the housing of the device and can cause a short circuit of the electronics.

Only clean with a soft, dry cloth. Never use solvents or cleaners.
2.8 Prevention of ESD Damage

ATTENTION!

The designation ESD (Electrostatic Sensitive Devices) refers to measures which are used to protect electrostatically endangered components from electrostatic discharge and thus to prevent destruction. Systems and assemblies with electrostatically endangered components usually have the following characteristics:

Indicator for assemblies with electrostatic endangered components

The following measures protect electrostatically endangered components from destruction:

Prepare removal and installation of assemblies
Unload yourself (for example, by touching a grounded object) before touching assemblies.

Ensure that you wear a grounding strap on the wrist when working with such assemblies, which you attach to an unpainted, non-conductive metal part of the system.

Use only tools and devices that are free from static electricity.

Transporting Assemblies
Assemblies may only be touched at the edge. Do not touch any pins or conductors on assemblies.

Installing and Removing Assemblies
Do not touch persons who are not grounded while removing or installing components. This could result in a loss of grounding protection from your electrostatic discharge.

Storing Assemblies
Always keep assemblies in ESD protective covers. These protective covers must be undamaged. ESD protective covers, which are extremely wrinkled or even have holes, no longer protect against electrostatic discharge.

ESD protective covers must not be low-resistance and metallically conductive if a lithium battery is installed on the assembly.
2.9 Return of Electrical and Electronic Equipment

ATTENTION!

WEEE Directive on Waste Electrical and Electronic Equipment 2012/19 / EU
(WEEE Waste Electrical and Electronic Equipment)

Separate Collection
Product Category: According to the device types listed in the WEEE Directive, Appendix 1, this product is classified as an IT and communication device.

Return and Collection Systems
For returning your old equipment, please use the country-specific return and collection systems available to you or contact Meinberg.

The withdrawal may be refused in the case of waste equipment which presents a risk to human health or safety due to contamination during use.

Return of used Batteries
Batteries marked with one of the following symbols may not be disposed of together with the household waste according to the EU Directive.
3 The Modular System SDU

The Signal distribution unit “SDU” is located in a 1HE 19 inch housing and is used to distribute different signals. The input/output signals of the SDU are led out via connectors on the back of the housing.

The system consists of one or two distribution modules which can distribute TTL-level signals (1PPS, IRIG DCLS or 10 MHz), optical fiber optic signals and/or modulated IRIG (IRIG am) depending on the application area.

Furthermore, the SDU can be equipped with different power supply types. An alarm relay output and the status LEDs in the front panel indicate whether the input signal is present and whether an internal fault has been detected that can interfere with the output signals.
4 Technical Specifications SDU/MP Chassis

Housing
19” multipac housing, 1U

Housing material
sheet steel

Temperature range

<table>
<thead>
<tr>
<th>Operation</th>
<th>0 ... 50 °C (0 ... 122 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>-20 ... 70 °C (-4 ... 158 °F)</td>
</tr>
</tbody>
</table>

Relative humidity

<table>
<thead>
<tr>
<th>Operation</th>
<th>max. 85 % (non-condensing) at 30°C</th>
</tr>
</thead>
</table>

Maximum altitude

<table>
<thead>
<tr>
<th>Operation</th>
<th>max. 2000 m / 6562 ft (above sea level)</th>
</tr>
</thead>
</table>

Acoustics
0 dB (A)

IP protection class
IP20
Housing dimensions

External Ground Connection on the Housing

This connector must be wired to an equipotential bonding bar (earthing bar). Connection is possible on the left hand site (frontview) of the housing. The mounting parts (without cable) are included in the scope of delivery.
5 Signal-Distribution Card SDU/TTL

The Board SDU/TTL was designed for the distribution of TTL signals. The input connection is a BNC connector, the input signal is driven to twelve output buffers, which are capable of driving 50 Ohm loads. The signal outputs are available via BNC connectors.

The SDU/TTL contains a ERROR detection for losing signal output, this ERROR state is signed by the Alarm LED on the front panel, and by the ERROR output connector on the back panel. For correct error detection on a PPS signal, a minimum pulse width of 100ms is required, shorter pulse width signals are possible on request. The insulated input by opto-coupler device is optional possible.

When Error output is available:

- During 'OK' State the connection of the Relay is between: CO - NO
- During 'ERROR' State the connection of the Relay is between: CO - NC

Specification:

<table>
<thead>
<tr>
<th>Inputs:</th>
<th>TTL Signal (IRIG_DC, PPS, 10MHz, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isulation by opto-coupler (option)</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range:</td>
<td>TTL</td>
</tr>
<tr>
<td>Outputs:</td>
<td>max. 24 x TTL</td>
</tr>
<tr>
<td>Output Impedance:</td>
<td>2.5 V into 50 Ohm load</td>
</tr>
<tr>
<td></td>
<td>common GND for all outputs</td>
</tr>
<tr>
<td>Crosstalk (Outputs):</td>
<td>30 dB min.</td>
</tr>
<tr>
<td>Connectors:</td>
<td>Inputsignal 1 x BNC isolated connector</td>
</tr>
<tr>
<td></td>
<td>Outputsignal max. 24 x BNC isolated connector</td>
</tr>
</tbody>
</table>
6 Time Code Distribution SDU/IRIG

The Board SDU/IRIG was designed for the distribution of IRIG-A/B Timecode signals. It is equipped with an adjustable input amplifier as well as twentyfour output buffers. The signal outputs are available via BNC connectors. By means of signal LEDs (Frontpanel), the status of the board is identifiable. Due to the input amplifiers adjustable gain, the boards are cascadable.

The SDU/IRIG contains a error detection for losing signal output, this ERROR state is signed by the Alarm LED on the front panel, and by the ERROR output connector on the back panel.

- During "OK" State the connection of the Relay is between: CO - NO
- During "ERROR" State the connection of the Relay is between: CO - NC

The SDU/IRIG is available in two different modules

- **Modul TCM**: Time Code modulated unbalanced
- **Modul TCB**: Time Code modulated balanced

Specification:

<table>
<thead>
<tr>
<th>Inputs:</th>
<th>IRIG-A/B Signal or similar timecode with sinusoidal carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range:</td>
<td>1.0 V_{pp} ... 6 V_{pp}</td>
</tr>
<tr>
<td>Input Impedance:</td>
<td>50 Ohm / 600 Ohm, DC-Insulated</td>
</tr>
<tr>
<td>Outputs:</td>
<td>balanced or unbalanced</td>
</tr>
<tr>
<td></td>
<td>max. 24 x IRIG-A/B Signal (or similar Timecode)</td>
</tr>
<tr>
<td></td>
<td>unbalanced 3 V_{pp} (MARK), 1 V_{pp} (SPACE) at 50 Ohm for IRIG common GND for all outputs</td>
</tr>
<tr>
<td></td>
<td>balanced 2 V_{pp} at 600 Ohm, with isolated BNC connector</td>
</tr>
<tr>
<td>Gain:</td>
<td>adjustable automatic gain control</td>
</tr>
<tr>
<td>Connectors:</td>
<td>Input signal 1 x BNC isolated connector</td>
</tr>
<tr>
<td></td>
<td>Output signal max. 24 x BNC isolated connector</td>
</tr>
</tbody>
</table>
6.1 Abstract of Time Code

The transmission of coded timing signals began to take on widespread importance in the early 1950’s. Especially the US missile and space programs were the forces behind the development of these time codes, which were used for the correlation of data. The definition of time code formats was completely arbitrary and left to the individual ideas of each design engineer. Hundreds of different time codes were formed, some of which were standardized by the "Inter Range Instrumentation Group" (IRIG) in the early 60’s.

Except these "IRIG Time Codes", other formats like NASA36, XR3 or 2137 are still in use. The SDU/MP however generates the IRIG-B, AFNOR NFS 87-500 code as well as IEEE1344 code which is an IRIG coded extended by information for time zone, leap second and date.
6.2 IRIG Standard Format
7 Distribution Module SDU/FO

The Board SDU/FO was designed for the distribution of fiber optic signals. It is equipped with an adjustable input amplifier as well as twelve outputs. The signal outputs are available via ST-connectors.

The SDU/FO contains an error detection for losing signal output, this ERROR state is indicated by the Alarm LED on the front panel, and by the ERROR output connector on the back panel.

- During "OK" State the connection of the Relay is between: CO - NO
- During "ERROR" State the connection of the Relay is between: CO - NC

Specification:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Input</td>
<td>multimode FO input via ST-connector</td>
</tr>
<tr>
<td></td>
<td>(for GI 50/125µm or GI 62.5/125µm)</td>
</tr>
<tr>
<td></td>
<td>optional: TTL input via BNC female connector</td>
</tr>
<tr>
<td>Optical Input Power</td>
<td>min 3µW</td>
</tr>
<tr>
<td>Outputs</td>
<td>12 x multi mode fiber optical output (optional max 24)</td>
</tr>
<tr>
<td></td>
<td>via ST connector</td>
</tr>
<tr>
<td></td>
<td>1 x error relay output</td>
</tr>
<tr>
<td>Launchable Output Power</td>
<td>typ. 20µW per output (into GI 50/125µm gradient fiber)</td>
</tr>
<tr>
<td>Wave Length</td>
<td>850nm</td>
</tr>
<tr>
<td>Signal Delay</td>
<td>- rising edge: 45ns</td>
</tr>
<tr>
<td></td>
<td>- falling edge: 45ns</td>
</tr>
<tr>
<td></td>
<td>- data rate: 20MHz max</td>
</tr>
</tbody>
</table>
8 Technical Datas SDU/MP

8.1 SDU/MP - Input and Output Options

<table>
<thead>
<tr>
<th>Connector</th>
<th>Type</th>
<th>Signal</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL In</td>
<td>BNC female</td>
<td>TTL In BNC female shielded coax line</td>
<td></td>
</tr>
<tr>
<td>TC AM</td>
<td>BNC female</td>
<td>1.0 ... 6 (V_{pp}) into 50 Ohm shielded coax line</td>
<td></td>
</tr>
<tr>
<td>Fiber Optik in</td>
<td>ST connector</td>
<td>Fiber Optik in ST connector 850nm multi mode shielded data line</td>
<td></td>
</tr>
<tr>
<td>Output Signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL Out</td>
<td>BNC female</td>
<td>TTL Out BNC female 2.5 (V_{pp}) into 50 Ohm shielded coax line</td>
<td></td>
</tr>
<tr>
<td>TC AM</td>
<td>BNC female</td>
<td>TC AM BNC female 3 (V_{pp}) into 50 Ohm shielded coax line</td>
<td></td>
</tr>
<tr>
<td>Fiber Optik Out</td>
<td>ST connector</td>
<td>Fiber Optik Out ST connector 850nm multi mode shielded data line</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>DFK - 3pin</td>
<td>Error DFK - 3pin Relays (change over)</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>cold plug</td>
<td>Power cold plug power supply cord</td>
<td></td>
</tr>
</tbody>
</table>

Date: 5th March 2020

SDU/MP
8.2 SDU - Power Supply Options

For Meinberg signal distribution units in 1U rackmount chassis, several power supply options are available:

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage Range</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>100–240 V AC (50–60 Hz)</td>
<td>.</td>
</tr>
<tr>
<td>AC/DC</td>
<td>100–240 V AC / 100–200 V DC</td>
<td>AD10</td>
</tr>
<tr>
<td>DC</td>
<td>20–60 V DC</td>
<td>DC20</td>
</tr>
<tr>
<td>HDC</td>
<td>100–200 V DC</td>
<td>/HDC</td>
</tr>
</tbody>
</table>

For example SDU/TTL with redundant AC/DC power supplies: SDU/TTL/AD10-AD10

8.2.1 AC Power Connector

<table>
<thead>
<tr>
<th>Connector Type:</th>
<th>IEC320 AC inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse:</td>
<td>T 2.5A H 250 V (internal)</td>
</tr>
</tbody>
</table>

Input Parameter

- Nominal Voltage Range: $U_N = 100-240$ V
- Maximum Voltage Range: $U_{max} = 90-265$ V
- Nominal Current: $I_N = 0.30$ A
- Nominal Frequency Range: $f_N = 50-60$ Hz
- Maximum Frequency Range: $f_{max} = 47-63$ Hz

Output Parameter

- Maximum Power: $P_{max} = 30$ W
- Max. Heat Emission: $E_{therm} = 108.00$ kJ/h (102.37 BTU/h)

WARNING!

This equipment is operated at a hazardous voltage. Danger to life due to electrical shock!

- Only qualified personnel (electricians) may connect the device.
- Never work with open terminals and plugs while the power is on.
- All connectors must be protected against touching live parts with a suitable plug housing!
- Note: Always ensure safe wiring!
- Important: The device must be connected to a proper grounding (PE).
8.2.2 AC/DC - Power Supply

Connection Type: 5pin DFK

Pin Assignment:
1: N/-
2: not connected
3: PE (Protective Earth)
4: not connected
5: L/+

Input Parameter

Nominal Voltage Range: \(U_N = 100-240 \text{ V} \sim \)
\(100-200 \text{ V } \Delta \)

Maximum Voltage Range: \(U_N = 90-254 \text{ V} \sim \)
\(90-240 \text{ V } \Delta \)

Nominal Current: \(I_N = 1.0 \text{ A} \sim \)
\(0.6 \text{ A } \Delta \)

Nominal Frequency Range: \(f_N = 50-60\text{Hz} \)

Maximum Frequency Range: \(f_{\text{max}} = 47-63\text{Hz} \)

Output Parameter

Maximum Power: \(P_{\text{max}} = 50 \text{ W} \)

Max. Wärmeenergie: \(E_{\text{therm}} = 180.00 \text{ kJ/h (170.61 BTU/h)} \)

WARNING!
This equipment is operated at a hazardous voltage.

Danger to life due to electrical shock!
- Only qualified personnel (electricians) may connect the device.
- Never work with open terminals and plugs while the power is on.
- All connectors must be protected against touching live parts with a suitable plug housing!
- Note: Always ensure safe wiring!
- Important: The device must be connected to a proper grounding (PE).
8.2.3 DC Power Connector

Connector:
5pin DFK

Pin Assignment:
1: not connected
2: \(V_{IN}^- \)
3: PE (Protective Earth)
4: \(V_{IN}^+ \)
5: not connected

Input Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage range</td>
<td>(U_N = 24 - 48 \text{ V})</td>
</tr>
<tr>
<td>Maximum voltage range</td>
<td>(U_{\text{max}} = 20 - 60 \text{ V})</td>
</tr>
<tr>
<td>Nominal current</td>
<td>(I_N = 2.1 \text{ A})</td>
</tr>
</tbody>
</table>

Output Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum power</td>
<td>(P_{\text{max}} = 50 \text{ W})</td>
</tr>
<tr>
<td>Maximum heat emission</td>
<td>(E_{\text{therm}} = 180.00 \text{ kJ/h} (170.61 \text{ BTU/h}))</td>
</tr>
</tbody>
</table>
8.2.4 HDC Power Supply Connector

Connection Type: 3-pin DFK

Pin assignment:
1: $V_{\text{IN}} -$
2: PE (Protective Earth)
3: $V_{\text{IN}} +$

Input Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Voltage Range</td>
<td>$U_N = 100-200$ V mA</td>
</tr>
<tr>
<td>Max. Voltage Range</td>
<td>$U_{\text{max}} = 90-250$ V mA</td>
</tr>
<tr>
<td>Nominal Current</td>
<td>$I_N = 0.30$ A</td>
</tr>
</tbody>
</table>

Output Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Power</td>
<td>$P_{\text{max}} = 30$ W</td>
</tr>
<tr>
<td>Max. heat emission</td>
<td>$E_{\text{therm}} = 108,00$ kJ/h (102,37 BTU/h)</td>
</tr>
</tbody>
</table>

WARNING!
This equipment is operated at a hazardous voltage.

Danger to life due to electrical shock!
- Only qualified personnel (electricians) may connect the device.
- Never work with open terminals and plugs while the power is on.
- All connectors must be protected against touching live parts with a suitable plug housing!

- Note: Always ensure safe wiring!
- Important: The device must be connected to a proper grounding (PE).
8.3 SDU - Signal Input Options

8.3.1 TTL In

- **Cable:** shielded coaxial line
- **Typ:** TTL
- **Connector:** BNC female, isolated

8.3.2 Fiber Optic Input

- **Optical input:** 850 nm Fiber optic input
- **Sensitivity:** 3 µW min. (-25 dBm)
- **Connector:** ST-connector
- **Cable:** GI50/125µm or GI62,5/125µm gradient fibre
8.3.3 Time Code AM Input

Isolation voltage: 3000 V DC

impedance (input):
- std. 600 Ohm,
- (50 Ohm / 5 kOhm)

Signal range:
- ca.600 mV - 8 V
- (Mark, peak-peak)

Connector: BNC female, isolated

Cable: shielded coax line

WARNING!
This equipment is operated at a hazardous voltage.

Danger to life due to electrical shock!
- **Never work with open terminals and plugs while the power is on!**
- When working on the connectors, always remove both sides of the cable from the respective devices!
- The device is equipped with potential-free and isolated connections. In the event of a fault in a connected device, dangerous voltages can occur at the signal lines.
8.4 SDU - Output Signal Options

8.4.1 TTL Output

Ausgangssignal: TTL
Level: 2.5 V$_{pp}$ into 50 Ohm
Connection type: BNC, female
Cable: shielded coax line

ATTENTION!

Unused connectors of optical interfaces should always be provided with a protective cap.
The optical interface contains a light-emitting diode (LED).

8.4.2 Fiber Optic Output

Optical outputs: 850 nm Fiber optic output
Connector: ST-connector
Cable: GI 50/125µm or GI 62.5/125µm gradient fibre

ATTENTION!

The optical interface contains a light-emitting diode (LED).
Unused connectors of optical interfaces should always be provided with a protective cap.
8.5 Error Relay

There is a relay output that is labeled "Error" on the unit. This is a potential free contact, which is directly controlled. Normally, when an input signal is applied, the relay and the relay contact "NO" is active. If the input is faulty or switched off the device, the relay contact "NC" is active.

Technical Specification

Switching Voltage max.: 125 V DC
 150 V AC

Switching Current max.: 1 A

Switching Load max.: DC 30 W
 AC 60 VA

Switching Current UL/CSA: 0.46 A 150 V AC
 0.46 A 65 V DC
 1 A 30 V DC

Response Time: ca.2ms

Normal Operation: CO - NO connected
>Error: CO - NC connected

WARNING!
This equipment is operated at a hazardous voltage.

Danger to life due to electrical shock!
- Never work with open terminals and plugs while the power is on!
- When working on the connectors of the error relay cable, always remove both sides of the cable from the respective devices!
- Dangerous voltages can occur at the terminal of the fault signal relay! Work on the terminal of the fault signal relay must never be carried out with the signal voltage present!
9 RoHS and WEEE

Compliance with EU Directive 2011/65/EU (RoHS)

We hereby declare that this product is conform to the European Directive 2011/65/EU and its delegated directive 2015/863/EU “Restrictions of Hazardous Substances in Electrical and Electronic Equipment”. We ensure that electrical and electronic products sold in the EU do not contain lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls (PBBs), and polybrominated diphenyl ethers (PBDEs), Bis(2-ethylhexyl)phthalate (DEHP), Benzylbutylphthalate (BBP), Dibutylphthalate (DBP), Diisobutylphthalate (DIBP), above the legal threshold.

WEEE status of the product

This product is handled as a B2B (Business to Business) category product. In order to secure a WEEE compliant waste disposal it has to be returned to the manufacturer. Any transportation expenses for returning this product (at its end of life) have to be incurred by the end user, whereas Meinberg will bear the costs for the waste disposal itself.